Skip to main content

Epigenetics of Mediterranean Diet: Altering Disease Risk

  • Chapter
  • First Online:
Mediterranean Diet

Part of the book series: Nutrition and Health ((NH))

Abstract

A Mediterranean diet (MD) pattern is characterized by consumption of olive oil, plant foods, fish, seafood, and low-fat dairy foods, a moderate intake of wine and low consumption of red meat and processed meat products. Such a dietary pattern has been thought to counter conditions/diseases such as metabolic syndrome, atherosclerosis, cancer, diabetes, obesity, pulmonary diseases, and cognition disorders.The disease prevention activites of a MD may be attributed to epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5hmc:

5-methylhydroxycytosine

Aβ:

Amyloid-β

CB1 :

Type 1 cannabinoid receptor

CIN2+:

Cervical intraepithelial neoplasia 2+

CLOCK :

Clock circadian regulator gene

CpGs:

Cytosine phosphate guanine dinucleotides

DHA:

Docosahexaenoic acid

DMR:

Differentially methylated region

ELOVL5:

Elongase 5

EVOO:

Extra-virgin olive oil

FADS2:

Fatty acid desaturase-2 gene

H3K9:

Histone 3 acetylation on lysine 9

HDACs:

Histone deacetylases

HT:

Hydroxytyrosol

IGF2 :

Insulin-like growth factor II

LIs:

Long interspersed nucleotide element

lncRNA:

Long noncoding RNA

MUFA:

Monounsaturated fatty acid

OLE:

Oleuropein aglycone

OO:

Olive oil

OPE:

Olive oil phenolic extract

PBMCs:

Peripheral blood mononuclear cells

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acid

TET:

Ten-eleven translocation family of proteins

Tg:

Double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein)

βOHB:

Ketone body β-hydroxybutyrate

References

  1. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, Serra-Majem L. Mediterranean Diet Foundation Expert Group. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2001;14:2274–84.

    Article  Google Scholar 

  2. Corella D, Ordovás JM. How does the Mediterranean diet promote cardiovascular health? Current progress toward molecular mechanisms: gene-diet interactions at the genomic, transcriptomic, and epigenomic levels provide novel insights into new mechanisms. Bioessays. 2014;36:526–37.

    Article  PubMed  CAS  Google Scholar 

  3. Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: a systematic review and meta-analysis of observational studies. Int J Cancer. 2014;135:1884–97.

    Article  PubMed  CAS  Google Scholar 

  4. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Muñoz MA, Sorlí JV, Martínez JA, Martínez-González MA. PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.

    Article  PubMed  CAS  Google Scholar 

  5. Simopoulos AP. The Mediterranean diets: what is so special about the diet of Greece? The scientific evidence. J Nutr. 2001;131 Suppl 11:S3065S–73.

    Google Scholar 

  6. Sánchez de Medina V, Riachy ME, Priego-Capote F, Luque de Castro MD. Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation-flame ionization detection. J Sci Food Agric. 2014. doi:10.1002/jsfa.7030.

    Google Scholar 

  7. Pérez AG, León L, Pascual M, Romero-Segura C, Sánchez-Ortiz A, de la Rosa R, et al. Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS One. 2014;9(3):e92898.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Skinner Laboratory Epigenetics Background Definition [Internet]. Washington State University. 2015 [cited 2015 Jan 24]. Available from: http://skinner.wsu.edu/toxnews/epigeneticdefinition.html

  9. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  PubMed  CAS  Google Scholar 

  10. Ross SA. Diet and epigenetics. In: Milner JA, Romagnolo DF, editors. Nutrition and health: bioactive compounds and cancer. New York: Springer Science + Business Media, LCC; 2010. p. 101–23.

    Chapter  Google Scholar 

  11. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.

    Article  PubMed  CAS  Google Scholar 

  12. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  PubMed  CAS  Google Scholar 

  14. Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci. 2007;100:7–23.

    Article  PubMed  CAS  Google Scholar 

  15. Burdge GC, Lillycrop KA, Jackson AA. Nutrition in early life, and risk of cancer and metabolic disease: alternative endings in an epigenetic tale? Br J Nutr. 2009;101:619–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr. 2010;30:315–39.

    Article  PubMed  CAS  Google Scholar 

  17. Ngollo M, Dagdemir A, Karsli-Ceppioglu S, Judes G, Pajon A, Penault-Llorca F, et al. Epigenetic modifications in prostate cancer. Epigenomics. 2014;6:415–26.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe Y, Maekawa M. Methylation of DNA in cancer. Adv Clin Chem. 2010;52:145–67.

    Article  PubMed  CAS  Google Scholar 

  19. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60.

    Article  PubMed  CAS  Google Scholar 

  20. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta. 2014;1839:627–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet. 2007;8:35–46.

    Article  PubMed  CAS  Google Scholar 

  22. Smith S, Mill J. Epigenetics and chronic diseases: an overview. In: Roach HI, Bronner F, Oreffo ROC, editors. Epigenetic aspects of chronic diseases. London: Springer; 2011. p. 1–20.

    Chapter  Google Scholar 

  23. Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839:1362–72.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Joh RI, Palmieri CM, Hill IT, Motamedi M. Regulation of histone methylation by noncoding RNAs. Biochim Biophys Acta. 2014;1839:1385–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Liu N, Pan T. RNA epigenetics. Transl Res. 2015;165:28–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11:607–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Delatte B, Deplus R, Fuks F. Playing TETris with DNA modifications. EMBO J. 2014;33:1198–211.

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Hesson LB, Sloane MA, Wong JW, Nunez AC, Srivastava S, Ng B, et al. Altered promoter nucleosome positioning is an early event in gene silencing. Epigenetics. 2014;9:1422–30.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Niculescu MD, Zeisel SH. Diet, methyl donors and DNA methylation: interactions between dietary folate, methionine and choline. J Nutr. 2002;132 Suppl 8:S2333–5.

    Google Scholar 

  30. Llanos AA, Dumitrescu RG, Brasky TM, Liu Z, Mason JB, Marian C, et al. Relationships among folate, alcohol consumption, gene variants in one-carbon metabolism and p16 INK4a methylation and expression in healthy breast tissues. Carcinogenesis. 2015;36:60–7.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17:2141–51.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Pham TX, Lee J. Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients. 2012;4:1868–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med. 2013;34:753–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Langley-Evans SC. Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet. 2015;28 Suppl 1:S1–14.

    Article  Google Scholar 

  35. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lepeule J, Baccarelli A, Motta V, Cantone L, Litonjua AA, Sparrow D, et al. Gene promoter methylation is associated with lung function in the elderly: The Normative Aging Study. Epigenetics. 2012;7:261–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Liu L, van Groen T, Kadish I, Li Y, Wang D, James SR, et al. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin Epigenetics. 2011;2:349–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49.

    PubMed Central  PubMed  Google Scholar 

  39. Chouliaras L, van den Hove DL, Kenis G, Draanen M, Hof PR, van Os J, et al. Histone deacetylase 2 in the mouse hippocampus: attenuation of age-related increase by caloric restriction. Curr Alzheimer Res. 2013;10:868–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Newman JC, Verdin E. Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 2014;25:42–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148:24–8.

    Article  PubMed  CAS  Google Scholar 

  42. O’Sullivan JM, Doynova MD, Antony J, Pichlmuller F, Horsfield JA. Insights from space: potential role of diet in the spatial organization of chromosomes. Nutrients. 2014;6:5724–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Zhang FF, Morabia A, Carroll J, Gonzalez K, Fulda K, Kaur M, et al. Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J Nutr. 2011;141:1165–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Piyathilake CJ, Badiga S, Kabagambe EK, Azuero A, Alvarez RD, Johanning GL, et al. A dietary pattern associated with LINE-1 methylation alters the risk of developing cervical intraepithelial neoplasia. Cancer Prev Res (Phila). 2012;5:385–92.

    Article  CAS  Google Scholar 

  45. Vanden Berghe W. Epigenetic impact of dietary polyphenols in cancer chemoprevention: lifelong remodeling of our epigenomes. Pharmacol Res. 2012;65:565–76.

    Article  CAS  Google Scholar 

  46. Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol. 2010;80:1771–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Thakur VS, Deb G, Babcook MA, Gupta S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J. 2014;16:151–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3:503–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140:1607–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Burdge GC, Lillycrop KA. Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care. 2014;17:156–61.

    Article  PubMed  CAS  Google Scholar 

  51. Lee HS, Barraza-Villarreal A, Biessy C, Duarte-Salles T, Sly PD, Ramakrishnan U, et al. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants. Physiol Genomics. 2014;46:851–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Di Francesco A, Falconi A, Di Germanio C, Micioni Di Bonaventura MV, Costa A, Caramuta S, et al. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. J Nutr Biochem. 2014. doi:10.1016/j.jnutbio.2014.10.013. pii: S0955-2863(14)00241-1.

    PubMed  Google Scholar 

  53. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Widmer RJ, Flammer AJ, Lerman LO, Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2014. doi:10.1016/j.amjmed.2014.10.014. pii: S0002-9343(14)00913-9.

    PubMed  Google Scholar 

  55. Oliveras-Ferraros C, Fernández-Arroyo S, Vazquez-Martin A, Lozano-Sánchez J, Cufí S, Joven J, et al. Crude phenolic extracts from extra virgin olive oil circumvent de novo breast cancer resistance to HER1/HER2-targeting drugs by inducing GADD45-sensed cellular stress, G2/M arrest and hyperacetylation of Histone H3. Int J Oncol. 2011;38:1533–47.

    PubMed  Google Scholar 

  56. Grossi C, Rigacci S, Ambrosini S, Ed Dami T, Luccarini I, Traini C, et al. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aβ plaque pathology. PLoS One. 2013;8(8):e71702.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Luccarini I, Grossi C, Rigacci S, Coppi E, Pugliese AM, Pantano D, et al. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-β toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging. 2014. doi:10.1016/j.neurobiolaging.2014.08.029. pii: S0197-4580(14)00591-0.

    PubMed  Google Scholar 

  58. Graff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, et al. An epigenetic blockade of cognitive functions in the neuro-degenerating brain. Nature. 2012;483:222–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Milagro FI, Gómez-Abellán P, Campión J, Martínez JA, Ordovás JM, Garaulet M. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29:1180–94.

    Article  PubMed  CAS  Google Scholar 

  60. Voisin S, Almén MS, Moschonis G, Chrousos GP, Manios Y, Schiöth HB. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet. 2014. doi:10.1038/ejhg.2014.139.

    PubMed Central  Google Scholar 

  61. Hoile SP, Clarke-Harris R, Huang RC, Calder PC, Mori TA, Beilin LJ, et al. Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells. PLoS One. 2014;9(10):e109896.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Reboredo-Rodríguez P, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. Quality of extra virgin olive oils produced in an emerging olive growing area in north-western Spain. Food Chem. 2014;164:418–26.

    Article  PubMed  CAS  Google Scholar 

  63. Cárdeno A, Sánchez-Hidalgo M, Alarcón-de-la-Lastra C. An up-date of olive oil phenols in inflammation and cancer: molecular mechanisms and clinical implications. Curr Med Chem. 2013;20:4758–76.

    Article  PubMed  CAS  Google Scholar 

  64. Sánchez-Quesada C, López-Biedma A, Warleta F, Campos M, Beltrán G, Gaforio JJ. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea. J Agric Food Chem. 2013;61:12173–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Larae McCarty for assistance with figure design and Paulina Knight for assistance with systematic literature searches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon A. Ross Ph.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ross, S.A. (2016). Epigenetics of Mediterranean Diet: Altering Disease Risk. In: Romagnolo, D., Selmin, O. (eds) Mediterranean Diet. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-27969-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27969-5_15

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-27967-1

  • Online ISBN: 978-3-319-27969-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics