Skip to main content
  • 685 Accesses

Abstract

Mechanisms of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) resistance should be identified upon disease progression in order to guide subsequent therapy (FigureĀ 4.1). Criteria for the definition of acquired resistance to EGFR-TKIs have been proposed to aid investigators and physicians [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackman D, Pao W, Riely GJ, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. 2010; 28:357-360.

    Google ScholarĀ 

  2. Chaft JE, Oxnard GR, Sima CS, et al. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res. 2011;17:6298-6303.

    Google ScholarĀ 

  3. Guo R, Chen X, Wang T, et al. Subsequent chemotherapy reverses acquired tyrosine kinase inhibitor resistance and restores response to tyrosine kinase inhibitor in advanced non-smallcell lung cancer. BMC Cancer. 2011; 11:90. doi: 10.1186/1471-2407-11-90.

    Google ScholarĀ 

  4. Yu HA, Sima CS, Huang J, et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2013;8:346-351.

    Google ScholarĀ 

  5. Weickhardt AJ, Scheier B, Burke JM, et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol. 2012;7:1807-1814.

    Google ScholarĀ 

  6. Mok TS, Wu Y-L, Nakagawa K, et al. Gefitinib / chemotherapy vs chemotherapy in EGFR mutation-positive NSCLC after progression on first-line gefitinib: the Phase III, randomised IMPRESS study. Ann Oncol. 2014; 25 (Suppl 5): v1-v41 (LBA2).

    Google ScholarĀ 

  7. Schuler MH, Yang C-H, Park K, et al. Continuation of afatinib beyond progression: results of a randomized, open-label, phase III trial of afatanib plus paclitaxel (P) versus investigatorā€™s choice chemotherapy (CT) in patients (pts) with metastatic non-small cell lung cancer (NSCLC) progressed on erlotinib/gefitinib (E/G) and afatanibā€”LUX-Lung 5 (LL5). J Clin Oncol. 32:5s, 2014 (suppl; abstr 8019).

    Google ScholarĀ 

  8. Mok TS, Wu Y, Nakagawa K, et al. Gefitinib/chemotherapy vs chemotherapy in epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) after progression on first-line gefitinib: the phase III, randomised impress study. Ann Oncol. 2014; 25 (Supp 4): LBA2_PR.

    Google ScholarĀ 

  9. Miller VA, Hirsh V, Cadranel J, et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528-538.

    Google ScholarĀ 

  10. Regales L, Gong Y, Shen R, et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest. 2009;119:3000-3010.

    Google ScholarĀ 

  11. Janjigian YY, Azzoli CG, Krug LM, et al. Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. Clin Cancer Res. 2011;17:2521-2527.

    Google ScholarĀ 

  12. Janjigian YY, Smit EF, Groen H, et al. Dual inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistance EGFR-Mutant Lung cancer with and without T790M Mutations. Cancer Discov .2014;4:1036-1045.

    Google ScholarĀ 

  13. Reckamp KL, Giaccone G, Camidge DR, et al. A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer. 2014;120:1145-1154.

    Google ScholarĀ 

  14. Ellis PM, Shepherd FA, Millwardet M, et al. Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non-small-cell lung cancer (NCIC CTG BR.26): a doubleblind, randomised, phase 3 trial. Lancet Oncol. 2014;15:1379-1388.

    Google ScholarĀ 

  15. Sequist LV, Besse B, Lynch TJ, et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:3076-3083.

    Google ScholarĀ 

  16. Pietanza MC, Lynch TJ Jr., Lara PN Jr., et al. XL647ā€“a multitargeted tyrosine kinase inhibitor: results of a phase II study in subjects with non-small cell lung cancer who have progressed after responding to treatment with either gefitinib or erlotinib. J Thorac Oncol. 2012;7:219-226.

    Google ScholarĀ 

  17. Lee JS, Hirsh V, Park K, et al. Vandetanib versus placebo in patients with advanced non-smallcell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol. 2012;30:1114-1121.

    Google ScholarĀ 

  18. Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009;462:1070-1074.

    Google ScholarĀ 

  19. Sequist LV, Soria JC, Goldman JW, et al. Rociletinib in EGFR-mutated nonā€“small-cell lung cancer. N Engl J Med 2015; 372:1700-1709. OVERCOMING EGFR-TKI RESISTANCE ā€¢ 49

    Google ScholarĀ 

  20. Sequist LV, Goldman JW, Wakelee HA, et al. Efficacy of rociletinib (CO-1686) in plasmagenotyped T790M-positive non-small cell lung cancer (NSCLC) patients (pts). J Clin Oncol. 2015; 33 (suppl; abstr 8001).

    Google ScholarĀ 

  21. Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790Mmediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046-1061.

    Google ScholarĀ 

  22. JƤnne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015; 372:1689-1699.

    Google ScholarĀ 

  23. Ramalingam SS, Yang JC, Lee CK, et al. AZD9291, a mutant-selective EGFR inhibitor, as first-line treatment for EGFR mutation-positive advanced non-small cell lung cancer (NSCLC): Results from a phase 1 expansion cohort. J Clin Oncol. 2015; 33 (suppl; abstr 8000).

    Google ScholarĀ 

  24. Ercan D, Choi HG, Yun CH, et al. EGFR mutations and resistance to irreversible pyrimidine based EGFR inhibitors. Clin Cancer Res. 2015; doi: 10.1158/1078-0432.CCR-14-2789

    Google ScholarĀ 

  25. Thress KS, Paweletz CP, Felip E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015; 21:560-562.

    Google ScholarĀ 

  26. Piotrowska Z, Niederst MJ, Karlovich CA, et al. Heterogeneity underlies the emergence of EGFR T790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 2015; doi: 10.1158/2159-8290.CD-15-0399.

    Google ScholarĀ 

  27. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007 May 18;316:1039-1043.

    Google ScholarĀ 

  28. Reckamp KL, Frankel PH, Mack PC, et al. Phase II trial of XL184 (cabozantinib) plus erlotinib in patients (pts) with advanced EGFR-mutant non-small cell lung cancer (NSCLC) with progressive disease (PD) on epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy: a California Cancer Consortium phase II trial (NCI 9303). J Clin Oncol. 32:5s, 2014 (suppl; abstr 8014).

    Google ScholarĀ 

  29. Wu Y-L, Yang JC-H, Kim D-W, et al. Safety and efficacy of INC280 in combination with gefitinib (gef ) in patients with EGFR-mutated (mut), MET-positive NSCLC: A single-arm phase lb/ll study. J Clin Oncol. 32:5s, 2014 (suppl; abstr 8017).

    Google ScholarĀ 

  30. Guix M, Faber AC, Wang SE, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 2008;118:2609-2619.

    Google ScholarĀ 

  31. Cortot AB, Repellin CE, Shimamura T, et al. Resistance to irreversible EGFR tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 2013;73:834-843.

    Google ScholarĀ 

  32. Ohashi K, Sequist LV, Arcila ME, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci USA 2012;109:E2127-2133.

    Google ScholarĀ 

  33. Chaft JE, Arcila ME, Paik PK, et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther. 2012;11:485-491.

    Google ScholarĀ 

  34. Kawano O, Sasaki H, Endo K, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54:209-215.

    Google ScholarĀ 

  35. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3:75ra26.

    Google ScholarĀ 

  36. Zhang Z, Lee JC, Lin L, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44:852-860.

    Google ScholarĀ 

  37. Garon EB, Moran T, Barlesi F, et al. Phase II study of the HSP90 inhibitor AUY922 in patients with previously treated, advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2012; 30: (suppl; abstr 7543).

    Google ScholarĀ 

  38. Johnson ML, Hart EM, Rademaker A, et al. A phase II study of HSP90 inhibitor AUY922 and erlotinib (E) for patients (pts) with EGFR-mutant lung cancer and acquired resistance (AR) to EGFR tyrosine kinase inhibitors (EGFR TKIs). J Clin Oncol. 2013; 31: (suppl; abstr 8036). 50 ā€¢ GUIDE TO TARGETED THERAPIES: TREATMENT RESISTANCE IN LUNG CANCER

    Google ScholarĀ 

  39. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013; 3:1355-1363.

    Google ScholarĀ 

  40. Dā€™Incecco A, Andreozzi M, Ludovini V, et al. PD1 and PDL1 expression in molecularly selected non-small cell lung cancer patients. Br J Cancer. 2015;112:95-102.

    Google ScholarĀ 

  41. Rizvi NA, Chow LQM, Borghaei H, et al. Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC. J Clin Oncol.2014; 32:5s (suppl; abstr 8022).

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cappuzzo, F. (2015). Overcoming EGFR-TKI Resistance. In: Guide to Targeted Therapies: Treatment Resistance in Lung Cancer. Adis, Cham. https://doi.org/10.1007/978-3-319-20741-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20741-4_4

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-20740-7

  • Online ISBN: 978-3-319-20741-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics