Skip to main content

Parametric Survival Models

  • Chapter
Regression Modeling Strategies

Part of the book series: Springer Series in Statistics ((SSS))

Abstract

The nonparametric estimator of S(t) is a very good descriptive statistic for displaying survival data. For many purposes, however, one may want to make more assumptions to allow the data to be modeled in more detail. By specifying a functional form for S(t) and estimating any unknown parameters in this function, one can

  1. 1.

    easily compute selected quantiles of the survival distribution;

  2. 2.

    estimate (usually by extrapolation) the expected failure time;

  3. 3.

    derive a concise equation and smooth function for estimating S(t), Λ(t), and λ(t); and

  4. 4.

    estimate S(t) more precisely than S KM(t) or S Λ (t) if the parametric form is correctly specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Buckley and I. James. Linear regression with censored data. Biometrika, 66:429–36, 1979.

    Article  MATH  Google Scholar 

  2. C. Cox. The generalized f distribution: An umbrella for parametric survival analysis. Stat Med, 27:4301–4313, 2008.

    Article  MathSciNet  Google Scholar 

  3. C. Cox, H. Chu, M. F. Schneider, and A. Muñoz. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med, 26:4352–4374, 2007.

    Article  MathSciNet  Google Scholar 

  4. D. R. Cox. Regression models and life-tables (with discussion). J Roy Stat Soc B, 34:187–220, 1972.

    MATH  Google Scholar 

  5. D. R. Cox and E. J. Snell. A general definition of residuals (with discussion). J Roy Stat Soc B, 30:248–275, 1968.

    MathSciNet  MATH  Google Scholar 

  6. R. B. D’Agostino, M. L. Lee, A. J. Belanger, and L. A. Cupples. Relation of pooled logistic regression to time dependent Cox regression analysis: The Framingham Heart Study. Stat Med, 9:1501–1515, 1990.

    Article  MATH  Google Scholar 

  7. M. Glasser. Exponential survival with covariance. J Am Stat Assoc, 62:561–568, 1967.

    Article  Google Scholar 

  8. S. M. Gore, S. J. Pocock, and G. R. Kerr. Regression models and non-proportional hazards in the analysis of breast cancer survival. Appl Stat, 33:176–195, 1984.

    Article  Google Scholar 

  9. J. E. Herndon and F. E. Harrell. The restricted cubic spline hazard model. Comm Stat Th Meth, 19:639–663, 1990.

    Article  MathSciNet  Google Scholar 

  10. J. E. Herndon and F. E. Harrell. The restricted cubic spline as baseline hazard in the proportional hazards model with step function time-dependent covariables. Stat Med, 14:2119–2129, 1995.

    Article  Google Scholar 

  11. S. L. Hillis. Residual plots for the censored data linear regression model. Stat Med, 14:2023–2036, 1995.

    Article  Google Scholar 

  12. P. Hougaard. Fundamentals of survival data. Biometrics, 55:13–22, 1999.

    Article  MATH  Google Scholar 

  13. J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data. Wiley, New York, 1980.

    MATH  Google Scholar 

  14. C. Kooperberg and D. B. Clarkson. Hazard regression with interval-censored data. Biometrics, 53:1485–1494, 1997.

    Article  MATH  Google Scholar 

  15. C. Kooperberg, C. J. Stone, and Y. K. Truong. Hazard regression. J Am Stat Assoc, 90:78–94, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. P. S. Kwong and J. L. Hutton. Choice of parametric models in survival analysis: applications to monotherapy for epilepsy and cerebral palsy. Appl Stat, 52:153–168, 2003.

    MathSciNet  MATH  Google Scholar 

  17. J. F. Lawless. Statistical Models and Methods for Lifetime Data. Wiley, New York, 1982.

    MATH  Google Scholar 

  18. M. A. Nicolaie, H. C. van Houwelingen, T. M. de Witte, and H. Putter. Dynamic prediction by landmarking in competing risks. Stat Med, 32(12):2031–2047, 2013.

    Article  MathSciNet  Google Scholar 

  19. M. C. Pike. A method of analysis of certain class of experiments in carcinogenesis. Biometrics, 22:142–161, 1966.

    Article  Google Scholar 

  20. J. Stare, F. E. Harrell, and H. Heinzl. BJ: An S-Plus program to fit linear regression models to censored data using the Buckley and James method. Comp Meth Prog Biomed, 64:45–52, 2001.

    Article  Google Scholar 

  21. C. J. Stone, M. H. Hansen, C. Kooperberg, and Y. K. Truong. Polynomial splines and their tensor products in extended linear modeling (with discussion). Ann Stat, 25:1371–1470, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Therneau and P. Grambsch. Modeling Survival Data: Extending the Cox Model. Springer-Verlag, New York, 2000.

    Book  Google Scholar 

  23. S. Wellek. A log-rank test for equivalence of two survivor functions. Biometrics, 49:877–881, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harrell, F.E. (2015). Parametric Survival Models. In: Regression Modeling Strategies. Springer Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-19425-7_18

Download citation

Publish with us

Policies and ethics