Skip to main content

Polybenzimidazoles with Enhanced Basicity: A Chemical Approach for Durable Membranes

  • Chapter
High Temperature Polymer Electrolyte Membrane Fuel Cells

Abstract

A major issue of polybenzimidazole (PBI)-based membranes is the leaching loss of the doping acid during fuel cell operation. In this chapter, two approaches to improve the conductivity and its stability are presented by tailoring the polymer basicity: (a) modification of the polymer backbone by synthesis of new monomers and (b) fabrication of (nano)composite membranes with functionalized fillers. Chemical modification of the polymer backbone is likely the strategic choice for its significant effect, simplicity, reproducibility and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DOE Fuel Cells Technical Plan, Hydrogen and Fuel Cells Programs (2012) www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

  2. Zhang L, Chae S-R, Hendren Z et al (2012) Recent advances in proton exchange membranes for fuel cells application. Chem Eng J 204–206:87–97

    Article  Google Scholar 

  3. Chandan A, Hattenberger M, El-Kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

    Article  Google Scholar 

  4. Bose S, Kuila T, Ngyyen TXH et al (2011) Polymer membranes for high temperature proton exchange membrane fuel cells: recent advances and challenges. Prog Polym Sci 36:813–843

    Article  Google Scholar 

  5. Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  6. Subianto S (2014) Recent advances in polybenzimidazole/phosphoric acid membranes for high temperature fuel cells. Polym Int 63:1134–1144

    Article  Google Scholar 

  7. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

    Article  Google Scholar 

  8. Asensio JA, Sanchez EM, Gomez-Romero P (2010) Proton-conducting membranes based on polybenzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210–3239

    Article  Google Scholar 

  9. Ma YL, Wainright JS, Litt MH, Savinell RF (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16

    Article  Google Scholar 

  10. Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ion 118:287–299

    Article  Google Scholar 

  11. Li QF, He RH, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ion 168:177–185

    Article  Google Scholar 

  12. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  Google Scholar 

  13. Kreuer KD (2014) Ion conducting membranes for fuel cells and other electrochemical devices. Chem Mater 26:361–380

    Article  Google Scholar 

  14. Mustarelli P, Quartarone E, Grandi S et al (2012) Increasing the permanent conductivity of PBI membranes for HT-PEMs. Solid State Ion 225:228–231

    Article  Google Scholar 

  15. Quartarone E, Mustarelli P (2012) Polymer fuel cells based on polybenzimidazole/H3PO4. Energy Environ Sci 5:6436–6444

    Article  Google Scholar 

  16. Carollo A, Quartarone E, Tomasi C et al (2006) Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications. J Power Sources 160:175–180

    Article  Google Scholar 

  17. Quartarone E, Carollo A, Mustarelli P et al (2006) New polybenzimidazole-based membranes for fuel cells. Mater Res Soc Symp Proc 972:125

    Article  Google Scholar 

  18. Mustarelli P, Quartarone E, Magistris A (2009) Membranes: polybenzimidazoles. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 2. Elsevier, Amsterdam, pp 734–740

    Chapter  Google Scholar 

  19. Angioni S, Righetti PP, Quartarone E (2011) Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs. Int J Hydrogen Energy 36:7174–7182

    Article  Google Scholar 

  20. Villa DC, Angioni S, Quartarone E et al (2013) New sulfonated PBIs for PEMFC application. Fuel Cells 13:98–103

    Article  Google Scholar 

  21. Angioni S, Villa DC, Dal Barco S et al (2013) Polysulfonation of BI-based membranes for HT-PEMFCs: a possible way to maintain high proton transport at a low H3PO4 doping level. J Mater Chem A 2:663–671

    Article  Google Scholar 

  22. Villa DC, Angioni S, Dal Barco S et al (2014) Polysulfonated fluoro-oxyPBI membranes for PEMFCs: an efficient strategy to achieve good fuel cell performances with low H3PO4 doping levels. Adv Energy Mater 4:1031949

    Article  Google Scholar 

  23. Kurdakova V, Quartarone E, Mustarelli P et al (2010) PBI-based composite membranes for polymer fuel cells. J Power Sources 195:7765–7769

    Article  Google Scholar 

  24. Grandi S, Mustarelli P, Carollo A et al (2010) New fillers for PBI-based composite electrolytes in polymer fuel cells. Composite Interfaces 17:649–662

    Article  Google Scholar 

  25. Quartarone E, Magistris A, Mustarelli P et al (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:349–355

    Article  Google Scholar 

  26. Quartarone E, Mustarelli P, Carollo A et al (2009) PBI composite and nanocomposite membranes for PEMFCs: the role of the filler. Fuel Cells 9:231–236

    Article  Google Scholar 

  27. Mustarelli P, Quartarone E, Grandi S et al (2008) Polybenzimidazole-based membranes as a real alternative to Nafion for fuel cells operating at low temperature. Adv Mater 20:1339–1343

    Article  Google Scholar 

  28. Mustarelli P, Carollo A, Grandi S et al (2007) Composite proton-conducting membranes for PEMFCs. Fuel Cells 7:441–446

    Article  Google Scholar 

  29. Vogel T, Marvel CS (1961) Polybenzimidazoles: new thermally stable polymers. J Polym Sci 50:511–539

    Article  Google Scholar 

  30. Zhai Y, Zhang G, Liu JH et al (2007) Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test. J Electrochem Soc 154:B72–B76

    Article  Google Scholar 

  31. Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540

    Article  Google Scholar 

  32. Pinar JF, Cañizares P, Rodrigo MA et al (2012) Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. RSC Adv 2:1547–1556

    Article  Google Scholar 

  33. Javaid Zaidi SM (2005) Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate. Electrochim Acta 50:4771–4777

    Article  Google Scholar 

  34. Eguizábal A, Lemus J, Urbiztondo M et al (2011) Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: a comprehensive study on dense and porous systems. J Power Sources 196:8994–9007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana Quartarone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angioni, S., Villa, D.C., Mustarelli, P., Quartarone, E. (2016). Polybenzimidazoles with Enhanced Basicity: A Chemical Approach for Durable Membranes. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics