Skip to main content

Bridging the Gap Between Information Theory and Wireless Networking

  • Chapter
Mathematical Foundations of Complex Networked Information Systems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2141))

  • 1100 Accesses

Abstract

In 1948 Shannon [1] addressed the fundamental problem of reliable communication over an unreliable channel. Shannon made three major contributions. First he provided the right formulation of the problem. Second, he provided the tools to study this problem. Third, he provided the answer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  2. N. Abramson, The ALOHA system – another alternative for computer communications, in AFIPS Conference Proceedings, vol. 37 (1970), pp. 281–285

    Google Scholar 

  3. R.M. Metcalfe, D.R. Boggs, Ethernet: distributed packet switching for local computer networks. Commun. ACM 19(7), 395–404 (1976)

    Article  Google Scholar 

  4. IEEE 802 LAN/MAN Standards Committee: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Standard 802.11, 1999 edition (1999)

    Google Scholar 

  5. A. Ephremides, B. Hajek, Information theory and communication networks: an unconsummated union. IEEE Trans. Inf. Theory 44, 2416–2434 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Gupta, P.R. Kumar, The capacity of wireless networks. IEEE Trans. Inf. Theory IT-46, 388–404 (2000)

    Article  MathSciNet  Google Scholar 

  7. L. Xie, P.R. Kumar, A network information theory for wireless communication: scaling laws and optimal operation. IEEE Trans. Inf. Theory 50, 748–767 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Ahlswede, Multiway communication channels, in Proceedings of the Second International Symposium on Information Theory, Tshaksador, Armenian S.S.R. (1971), pp. 23–52

    Google Scholar 

  9. H. Liao, Multiple access channels, Ph.D. thesis, University of Hawaii, 1972

    Google Scholar 

  10. H. Weingarten, Y. Steinberg, S. Shamai, The capacity region of the Gaussian MIMO broadcast channel, in Proceedings IEEE International Symposium on Information Theory (ISIT), Chicago, IL (2004)

    Google Scholar 

  11. T.M. Cover, A. El Gamal, Capacity theorems for the relay channel. IEEE Trans. Inf. Theory 25, 572–584 (1979)

    Article  MATH  Google Scholar 

  12. M. Franceschetti, J. Bruck, L. Schulman, Microcellular systems, random walks and wave propagation, in Proceedings of the IEEE Symposium on Antennas and Propagation Society (IEEE AP-S 2002), San Antonio (2002)

    Google Scholar 

  13. T.S. Rappaport, Wireless Communications, Principles and Practice (Prentice Hall, New York, 1996)

    Google Scholar 

  14. A.E. Gamal, Results in Multiple User Channel Capacity, PhD. thesis, Stanford University, 1978

    Google Scholar 

  15. A. Agarwal, P.R. Kumar, Improved capacity bounds for wireless networks. Wirel. Commun. Mob. Comput. 4, 251–261 (2004)

    Article  Google Scholar 

  16. A. Agarwal, P.R. Kumar, Capacity bound for ad-hoc and hybrid wireless networks. ACM SIGCOMM Comput. Commun. Rev. 34, 71–81 (2004). Special issue on Science of Networking Design

    Google Scholar 

  17. F. Xue, L. Xie, P.R. Kumar, The transport capacity of wireless networks over fading channels. IEEE Trans. Inf. Theory 51, 834–847 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Jovicic, P. Viswanath, S.R. Kulkarni, Upper bounds to transport capacity of wireless networks. IEEE Trans. Inf. Theory 50(11), 2555–2565 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. L.-L. Xie, P.R. Kumar, On the path-loss attenuation regime for positive cost and linear scaling of transport capacity in wireless networks. Joint Special Issue IEEE Trans. Inf. Theory IEEE/ACM Trans. Netw. Netw. Inf. Theory 52(6), 2313–2328 (2006)

    MATH  MathSciNet  Google Scholar 

  20. O. Leveque, I.E. Telatar, Information-theoretic upper bounds on the capacity of large extended ad hoc wireless networks. IEEE Trans. Inf. Theory 51(3), 858–865 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Aeron, V. Saligrama, Wireless ad hoc networks: strategies and scaling laws for the fixed SNR regime. IEEE Trans. Inf. Theory 53(6), 2044–2059 (2007)

    Article  MathSciNet  Google Scholar 

  22. A. Ozgur, O. Leveque, D.N.C. Tse, Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572 (2007)

    Article  MathSciNet  Google Scholar 

  23. L.-L. Xie, On information-theoretic scaling laws for wireless networks. IEEE Trans. Inf. Theory (2008). Revised, July 2009. http://arxiv.org/abs/0809.1205

  24. U. Niesen, P. Gupta, D. Shah, The capacity region of large wireless networks. IEEE Trans. Inf. Theory (2008). Available online at http://arxiv.org/abs/0809.1344

  25. M. Franceschetti, M.D. Migliore, P. Minero, The capacity of wireless networks: information-theoretic and physical limits. IEEE Trans. Inf. Theory 55, 3413–3424 (2009)

    Article  MathSciNet  Google Scholar 

  26. A. Giridhar, P.R. Kumar, Computing and communicating functions over sensor networks. IEEE J. Sel. Areas Commun. 23(4), 755–764 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kumar, P.R. (2015). Bridging the Gap Between Information Theory and Wireless Networking. In: Fagnani, F., Fosson, S., Ravazzi, C. (eds) Mathematical Foundations of Complex Networked Information Systems. Lecture Notes in Mathematics(), vol 2141. Springer, Cham. https://doi.org/10.1007/978-3-319-16967-5_4

Download citation

Publish with us

Policies and ethics