Skip to main content

Autonomous Underwater Vehicle Docking

  • Chapter
Springer Handbook of Ocean Engineering

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter describes the practical challenges of docking autonomous underwater vehicles (GlossaryTerm

AUV

s) in the ocean environment and approaches undertaken to create working docking systems. Early docking work was motivated by the desire to operate AUVs for multiple sorties without recovery or human servicing of the AUV. To accomplish this, the docking system provides a method for the AUV to find the dock, to physically attach, to recharge AUV batteries, to establish a communication link, to wait in a low power state for a new mission, and to undock. A variety of homing methods, dock configurations, power transfer approaches, and communications links have been employed to achieve these respective needs, and are described herein. While the original applications driving docking were oceanographic in nature, present interest is broader, driven by commercial and military applications as well. Docking has been demonstrated, but has not been deployed as an operational capability, in part because docking requires an infrastructure for the dock that provides physical mounting, a source of power, and communication connectivity. The advent of cabled and mooring-based observatories, and subsea infrastructure for oil and gas production, create a foundation supporting docking system deployment. Consequently, the prospects for operational docking systems seem promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOSN:

autonomous ocean sampling network

AUV:

autonomous underwater vehicle

CAD:

computer-aided design

IRM:

inspection, repair, and maintenance

RF:

radio frequency

ROV:

remotely operated vehicle

SBL:

short baseline

TSL:

tunnel sea lion

USBL:

ultrashort baseline

UUV:

unmanned underwater vehicle

References

  • D.E.F. Kemp, W. Paul, D. Peters: Mooring developments for autonomous ocean-sampling networks, IEEE-JOE 26(4), 477–486 (2001)

    Google Scholar 

  • R.S. McEwen, B.W. Hobson, L. McBride, J.G. Bellingham: Docking control system for a 54-cm-diameter (21-in) AUV, IEEE-JOE 33(4), 550–562 (2008)

    Google Scholar 

  • National Research Council (US) Committee on Seafloor Observatories: Illuminating the Hidden Planet: The Future of Seafloor Observatory Science (National Academies Press, Washington 2000)

    Google Scholar 

  • T.B. Curtin, J.G. Bellingham, J. Catipovic, D. Webb: Autonomous oceanographic sampling networks, Oceanography 6(3), 86–94 (1993)

    Article  Google Scholar 

  • H. Singh, J.G. Bellingham, F. Hover, S. Lemer, B.A. Moran, K. von der Heydt, D. Yoerger: Docking for an autonomous ocean sampling network, IEEE-JOE 26(4), 498–514 (2001)

    Google Scholar 

  • M.D. Feezor, F.Y. Sorrell, P.R. Blankinship, J.G. Bellingham: Autonomous underwater vehicle homing/docking via electromagnetic guidance, IEEE-JOE 26(4), 515–521 (2001)

    Google Scholar 

  • S. Cowen, S. Briest, J. Dombrowski: Underwater docking of autonomous undersea vehicles using optical terminal guidance, Proc. IEEE OCEANS‘97, Vol. 2 (1997) pp. 1143–1147

    Google Scholar 

  • R. Stokey, B. Allen, T. Austin, R. Goldsborough, N. Forrester, M. Purcell, C. von Alt: Enabling technologies for REMUS docking: An integral component of an autonomous ocean-sampling network, IEEE-JOE 26(4), 487–497 (2001)

    Google Scholar 

  • J. Jamieson, L. Wilson, M. Arredondo, J. Evans, K. Hamilton, C. Sotzing: Autonomous inspection vehicle: A new dimension in life of field operations, Proc. Offshore Technol. Conf. (2012), OTC-23365

    Google Scholar 

  • L. Brignone, M. Perrier, C. Viala: A fully autonomous docking strategy for intervention AUVs, Proc. IEEE OCEANS‘07 (2007) pp. 1–6

    Google Scholar 

  • S. Krupinski, F. Maurelli, G. Grenon, Y. Petillot: Investigation of autonomous docking strategies for robotic operation on intervention panels, Proc. IEEE OCEANS‘08 (2008) pp. 1–10

    Google Scholar 

  • J. Jacobson, P. Cohen, A. Nasr, A.J. Schroeder, G. Kusinski: Laying the groundwork for AUV standards for deepwater fields, Mar. Technol. Soc. J. 47(3), 13–18 (2013)

    Article  Google Scholar 

  • Y. Chardard, T. Copros: Swimmer: Final sea demonstration of this innovative hybrid AUV/ROV system, Proc. IEEE Underw. Technol. (2002) pp. 17–23

    Google Scholar 

  • J. Evans, P. Redmond, C. Plakas, K. Hamilton, D. Lane: Autonomous docking for intervention–AUVs using sonar and video-based real-time 3-D pose estimation, Proc. IEEE OCEANS‘03, Vol. 4 (2003) pp. 2201–2210

    Google Scholar 

  • M.O. Piggott: USS Scranton Completes Successful UUV Test (Navy Newsstand, Washington 2006), NNS 060309-10

    Google Scholar 

  • M.S. Stewart, J. Pavlos: A means to networked persistent undersea surveillance, Proc. Submar. Technol. Symp. (2006)

    Google Scholar 

  • F.D. Maire, D. Prasser, M. Dunbabin, M. Dawson: A vision based target detection system for docking of an autonomous underwater vehicle, Proc. Australas. Conf. Robotics Autom. (2009)

    Google Scholar 

  • D. Pyle, R. Granger, B. Geoghegan, R. Lindman, J. Smith: Leveraging a large UUV platform with a docking station to enable forward basing and persistence for light weight AUVs, Proc. IEEE OCEANS‘12 (2012) pp. 1–8

    Google Scholar 

  • P. King, R. Lewis, D. Mouland, D. Walker: CATCHY: An AUV ice dock, Proc. IEEE OCEANS‘09 (2009) pp. 1–6

    Google Scholar 

  • A. Murarka, G. Kuhlmann, S. Gulati, M. Sridharan, C. Flesher, W.C. Stone: Vision-based frozen surface egress: A docking algorithm for the endurance AUV, Proc. 15th UUST (2009)

    Google Scholar 

  • M. Sibenac, W.J. Kirkwood, R. McEwen, F. Shane, R. Henthorn, D. Gashler, H. Thomas: Modular AUV for routine deep water science operations, Proc. IEEE OCEANS‘02, Vol. 1 (2002) pp. 167–172

    Google Scholar 

  • J.G. Bellingham, C.A. Goudey, T.R. Consi, J.W. Bales, D.K. Atwood, J.J. Leonard, C. Chryssostomidis: A second generation survey AUV, Proc. AUV‘94 (1994) pp. 148–155

    Google Scholar 

  • B. Allen, R. Stokey, T. Austin, N. Forrester, R. Goldsborough, M. Purcell, C. von Alt: REMUS: A small, low cost AUV; system description, field trials and performance results, Proc. IEEE OCEANS‘97, Vol. 2 (1997) pp. 994–1000

    Google Scholar 

  • W. Stone, B. Hogan, C. Flesher, S. Gulati, K. Richmond, A. Murarka, G. Kuhlman: Design and deployment of a four-degrees-of-freedom hovering autonomous underwater vehicle for sub-ice exploration and mapping, J. Eng. Marit. Environ. 224(4), 341–361 (2010)

    Google Scholar 

  • B. Johansson, J. Siesjo, M. Furuholmen: Seaeye Sabertooth a hybrid AUV/ROV offshore system, Proc. IEEE OCEANS‘10 (2010) pp. 1–3

    Google Scholar 

  • J.G. Bellingham, Y. Zhang, J.E. Kerwin, J. Erikson, B. Hobson, B. Kieft, M. Godin: Efficient propulsion for the Tethys long-range autonomous underwater vehicle, Proc. IEEE/OES AUV‘10 (2010) pp. 1–7

    Google Scholar 

  • R.J. Urick: Principles of Underwater Sound (McGraw-Hill, New York 1983)

    Google Scholar 

  • D.R. Yoerger, M. Jakuba, A.M. Bradley, B. Bingham: Techniques for deep sea near bottom survey using an autonomous underwater vehicle, Int. J. Robotics Res. 26(1), 41–54 (2007)

    Article  MATH  Google Scholar 

  • J. Vaganay, J.J. Leonard, J.G. Bellingham: Outlier rejection for autonomous acoustic navigation, Proc. IEEE ICRA‘96, Vol. 3 (1996) pp. 2174–2181

    Google Scholar 

  • M. Deffenbaugh, H. Schmidt, J.G. Bellingham: Acoustic positioning in a fading multipath environment, Proc. IEEE OCEANS‘96, Vol. 2 (1996) pp. 596–600

    Google Scholar 

  • K. Vickery: Acoustic positioning systems. A practical overview of current systems, Proc. IEEE AUV’98 (1998) pp. 5–17

    Google Scholar 

  • R.D. Light, J. Morison: The autonomous conductivity-temperature vehicle: First in the seashuttle family of autonomous underwater vehicle’s for scientific payloads, Proc. IEEE OCEANS‘89, Vol. 3 (1989) pp. 793–798

    Chapter  Google Scholar 

  • G.M. de Goede, D. Norris: Recovering unmanned undersea vehicles with a homing and docking sonar, Proc. IEEE OCEANS‘05 (2005) pp. 2789–2794

    Google Scholar 

  • B. Allen, T. Austin, N. Forrester, R. Goldsborough, A. Kukulya, G. Packard, M. Purcell, R. Stokey: Autonomous docking demonstrations with enhanced REMUS technology, Proc. IEEE OCEANS‘06 (2006) pp. 1–6

    Google Scholar 

  • M.J. Stanway: Private communication, February 2013

    Google Scholar 

  • S. Cowen: Flying plug: A small UUV designed for submarine data connectivity, Tech. Rep. NCCOSC Ser., Vol. 796 (Space and Naval Warfare Systems Center, San Diego 1997)

    Google Scholar 

  • S.M. Smith, D. Kronen: Experimental results of an inexpensive short baseline acoustic positioning system for AUV navigation, Proc. IEEE OCEANS‘97, Vol. 1 (1997) pp. 714–720

    Google Scholar 

  • J.C. Evans, K.M. Keller, J.S. Smith, P. Marty, O.V. Rigaud: Docking techniques and evaluation trials of the swimmer AUV: An autonomous deployment AUV for work-class ROVs, Proc. IEEE OCEANS‘01, Vol. 1 (2001) pp. 520–528

    Google Scholar 

  • D. Stramski, E. Boss, D. Bogucki, K.J. Voss: The role of seawater constituents in light backscattering in the ocean, Prog. Oceanogr. 61(1), 27–56 (2004)

    Article  Google Scholar 

  • Y. Hong, J. Kim, P. Lee, B. Jeon, K. Oh, J. Oh: Development of the homing and docking algorithm for AUV, Proc. 13th Int. Offshore Polar Eng. Conf. (2003) pp. 205–212

    Google Scholar 

  • J. Park, B. Jun, P. Lee, J. Oh: Experiments on vision guided docking of an autonomous underwater vehicle using one camera, Ocean Eng. 36(1), 48–61 (2009)

    Article  Google Scholar 

  • B.-H. Jun, J.-Y. Park, F.-Y. Lee, P.-M. Lee, C.-M. Lee, K. Kim, Y.-K. Lim, J.-H. Oh: Development of the AUV ISiMI and a free running test in an ocean engineering basis, Ocean Eng. 36(1), 1–14 (2009)

    Article  Google Scholar 

  • A.A. Kushnerik, A.V. Vorontsov, A.P. Scherbatyuk: Small AUV docking algorithms near dock unit based on visual data, Proc. IEEE OCEANS‘09 (2009) pp. 1–9

    Google Scholar 

  • T. Palmer, D. Ribas, P. Ridao, A. Mallios: Vision based localization system for AUV docking on subsea intervention panels, Proc. IEEE OCEANS‘09 (2009) pp. 1–10

    Google Scholar 

  • R.M. Stenson, D.J. Braun, L.A. Hamme, C.D. Mailey: Underwater unmanned vehicle recovery system and method, US Patent 7854569 B1 (2010), issued December 21

    Google Scholar 

  • T.F. Tureaud, D.N. Dietz, S.J. Hills, D.E. Humphreys, A.V. Roup: Docking Apparatuses and Method, US Patent 8141369 B1 (2012)

    Google Scholar 

  • C. Kaminski, T. Crees, J. Ferguson, A. Forrest, J. Williams, D. Hopkin, G. Heard: 12 days under ice – An historic AUV deployment in the Canadian high arctic, Proc. IEEE/OES AUV‘10 (2010) pp. 1–11

    Google Scholar 

  • M.D. Feezor, F.Y. Sorrell, P.R. Blankinship: An interface system for autonomous undersea vehicles, IEEE-JOE 26(4), 522–525 (2001)

    Google Scholar 

  • K.M. Tjoa: The Bottom Boundary Layer Under Shoaling Inner Shelf Solitons, M.Sc. Thesis (Naval Postgraduate School, Monterey 2003)

    Google Scholar 

  • H. Painter, J. Flynn: Current and future wet-mate connector technology developments for scientific seabed observatory applications, Proc. IEEE OCEANS‘06 (2006) pp. 1–6

    Google Scholar 

  • R.P. Granger, C.M. Baer, N.H. Gabriel, J.J. Labosky, T.C. Galford: Non-contact wet mateable connectors for power and data transmission, Proc. MTS/IEEE OCEANS‘13 (2013) pp. 1–4

    Google Scholar 

  • R. Coulson, J. Lambiotte, E. An: A modular docking system for 12.75-inch class AUVs, Sea Technol., 49–54 (2005)

    Google Scholar 

  • A.M. Bradley, M.D. Feezor, H. Singh, F.Y. Sorrell: Power systems for autonomous underwater vehicles, IEEE-JOE 26(4), 526–538 (2001)

    Google Scholar 

  • L. Wu, Y. Li, S. Su, P. Yan, Y. Qin: Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents, IEEE-JOE 85, 110–126 (2014)

    Google Scholar 

  • P. Jantapremjit, P.A. Wilson: Control and guidance for homing and docking tasks using an autonomous underwater vehicle, Proc. IROS‘07 (2007) pp. 3672–3677

    Google Scholar 

  • S.M. Smith, G.J.S. Rae, D.T. Anderson: Applications of fuzzy logic to the control of an autonomous underwater vehicle, Proc. IEEE 2nd Int. Conf. Fuzzy Syst. (1993) pp. 1099–1106

    Google Scholar 

  • K.A. White, S.M. Smith, K. Ganesan, D. Kronen, G.J.S. Rae, R.M. Langenbach: Performance results of a fuzzy behavioral altitude flight controller and rendezvous and docking of an autonomous underwater vehicles with fuzzy control, Proc. AUV‘96 (1996) pp. 117–124

    Google Scholar 

  • O.A. Yakimenko, D.P. Horner, D.G. Pratt: AUV rendezvous trajectories generation for underwater recovery, Proc. 16th Med. Conf. Control Autom. (2008) pp. 1192–1197

    Google Scholar 

  • J.G. Bellingham, J.J. Leonard: Task configuration with layered control, Proc. IARP 2nd Mob. Robots Subsea Environ. (1994) p. 193

    Google Scholar 

  • M.R. Benjamin, H. Schmidt, P.M. Newman, J.J. Leonard: Nested autonomy for unmanned marine vehicles with MOOS-IvP, J. Field Robotics 27(6), 834–875 (2010)

    Article  Google Scholar 

  • H. Mikada, K. Asakawa: Development of Japanese scientific cable technology, Proc. IEEE OCEANS‘08 (2008) pp. 1–4

    Google Scholar 

  • N.C. Forrester, R.P. Stokey, C. von Alt, B.G. Allen, R.G. Goldsborough, M.J. Purcell, T.C. Austin: The LEO-15 long-term ecosystem observatory: Design and installation, Proc. IEEE OCEANS‘97, Vol. 2 (1997) pp. 1082–1088

    Google Scholar 

  • Monterey Bay Aquarium Research Institute: Monterey Accelerated Research System (MARS), http://www.mbari.org/mars/

  • C.R. Barnes, M.M.R. Best, F.R. Johnson, B. Pirenne: Final installation and initial operation of the world’s first regional cabled ocean observatory (NEPTUNE Canada), Canadian Meterological and Oceanographic Society Bulletin 38(3), 89–96 (2010)

    Google Scholar 

  • Y. Kaneda: Advanced ocean floor network system for mega thrust earthquakes and tsunamis, Proc. IEEE UT’11 SSC’11 (2011) pp. 1–6

    Google Scholar 

  • B.W. Hobson, J.G. Bellingham, B. Kieft, R. McEwen, M. Godin, Y. Zhang: Tethys-class long range AUVs-extending the endurance of propeller-driven cruising AUVs from days to weeks, Proc. IEEE/OES AUV‘12 (2012) pp. 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Bellingham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellingham, J.G. (2016). Autonomous Underwater Vehicle Docking. In: Dhanak, M.R., Xiros, N.I. (eds) Springer Handbook of Ocean Engineering. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-16649-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16649-0_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16648-3

  • Online ISBN: 978-3-319-16649-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics