Skip to main content

Motion of a Body Immersed in a Vlasov System

  • Chapter
  • First Online:
Mathematical Models of Viscous Friction

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2135))

  • 1278 Accesses

Abstract

In this chapter we study the motion of a body immersed in a Vlasov system. Such a choice for the medium allows to overcome problems connected to the irregular motion of the body occurring when it interacts with a gas of point particles. On the contrary, in case of a Vlasov system, the motion is expected to be regular. The interaction body/medium is assumed to be hard core, which implies the existence of a stationary motion for any initial data and any intensity of external constant force acting on the body. Moreover, we investigate the asymptotic approach of the body velocity to the limiting one, showing that in case of not self-interacting medium the approach is proportional to an inverse power of time. Such a behavior, surprising for not being exponential as in many viscous friction problems, is due to the recollisions that a single particle of the medium can deliver with the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. Math. Model Numer. Anal. 42, 263–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309(1,13) (2009)

    Google Scholar 

  3. Balkrishnan, V., Bena, I., Van der Broeck, C.: Velocity correlations, diffusion and stochasticity in a one-dimensional system. Phys. Rev. E 65, 031102(1,9) (2002)

    Google Scholar 

  4. Bruneau, L., De Bièvre, S.: A Hamiltonian model for linear friction in a homogeneous medium. Commun. Math. Phys. 229, 511–542 (2002)

    Article  MATH  Google Scholar 

  5. Buttà, P., Manzo, F., Marchioro, C.: A simple Hamiltonian model of runaway particle with singular interaction. Math. Models Methods Appl. Sci. 15, 753–766 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264, 167–189 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cavallaro, G.: On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. Appl. 27, 123–145 (2007)

    MATH  MathSciNet  Google Scholar 

  9. Cavallaro, G., Marchioro, C.: On the motion of an elastic body in a free gas. Rep. Math. Phys. 69, 251–264 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cecconi, F., Cencini, M., Vulpiani, A.: Transport properties of chaotic and non-chaotic many particle systems. J. Stat. Mech. Theory Exp. 12, (2007)

    Google Scholar 

  11. Chen, X., Strauss, W.: Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles. Arch. Ration. Mech. Anal. 211, 879–910 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, X., Strauss, W.: Velocity reversal criterion of a body immersed in a sea of particles. Preprint. arXiv:1404.0652 (2014)

    Google Scholar 

  13. Fröhlich, J., Gang, Z., Soffer, A.: Some Hamiltonian models of friction. J. Math. Phys. 52, 083508(1,13) (2011)

    Google Scholar 

  14. Fröhlich, J., Gang, Z., Soffer, A.: Friction in a model of hamiltonian dynamics. Commun. Math. Phys. 315, 401–444 (2012)

    Article  MATH  Google Scholar 

  15. Gruber, C., Piasecki, J.: Stationary motion of the adiabatic piston. Physica A 268, 412–423 (1999)

    Article  Google Scholar 

  16. Lebowitz, J.L., Piasecki, J., Sinai, Y.: Scaling dynamics of a massive piston in a ideal gas. In: Hard Ball Systems and the Lorentz Gas. Encylopaedia of Mathematical Sciences, vol. 101, pp. 217–227. Springer, Berlin (2000)

    Google Scholar 

  17. Ricciuti, C., Sisti, F.: Effects of concavity on the motion of a body immersed in a Vlasov gas. SIAM J. Math. Anal. 46, 3579–3611 (2014)

    Article  MathSciNet  Google Scholar 

  18. Tsuji, T., Aoki, K.: Decay of an oscillating plate in a free-molecular gas. In: Levin, D.A., Wysong, I., Garcia, A., Gochberg, L.A. (eds.) Rarefied Gas Dynamics, pp. 140–145. AIP, Melville (2011)

    Google Scholar 

  19. Tsuji, T., Aoki, K.: Decay of a linear pendulum in a free-molecular gas and in a special Lorentz gas. J. Stat. Phys. 146, 620–645 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tsuji, T., Aoki, K.: Moving boundary problems for a rarefied gas: spatially one-dimensional case. J. Comput. Phys. 250, 574–600 (2013)

    Article  MathSciNet  Google Scholar 

  21. Tsuji, T., Aoki, K.: Decay of a linear pendulum in a collisional gas: spatially one-dimensional case. Phys. Rev. E 89, 052129 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

We give a derivation of the equation of motion (3.8)–(3.9) in the one-dimensional case, the d-dimensional case following by straightforward modifications. We present two different derivations. In the first one, we will obtain the equation of motion from the time derivative of the total momentum of the system gas+disk in case of null external force, which is conserved along the motion,

$$\displaystyle{ \frac{\mathrm{d}} {\mathrm{d}t}\int _{\mathbb{R}}\!\mathrm{d}x\int _{\mathbb{R}}\!\mathrm{d}v\;vf(x,v;t) +\dot{ V }(t) = 0\;. }$$
(3.124)

Let

$$\displaystyle\begin{array}{rcl} f^{L}(X(t),v;t) =\lim _{ x\rightarrow X(t)^{-}}f(x,v;t)\;,& &{}\end{array}$$
(3.125)
$$\displaystyle\begin{array}{rcl} f^{R}(X(t),v;t) =\lim _{ x\rightarrow X(t)^{+}}f(x,v;t)\;.& &{}\end{array}$$
(3.126)

We calculate the first term in (3.124). Using (3.3) and the fact that

$$\displaystyle{ \lim _{x\rightarrow -\infty }f(x,v;t) =\lim _{x\rightarrow \infty }f(x,v;t) =\rho \left (\frac{\beta } {\pi }\right )^{1/2}\mathrm{e}^{-\beta v^{2} }\;, }$$
(3.127)

we have,

$$\displaystyle\begin{array}{rcl} & & \frac{\mathrm{d}} {\mathrm{d}t}\left [\int _{-\infty }^{X(t)}\!\mathrm{d}x\int _{ \mathbb{R}}\!\mathrm{d}v\;vf(x,v;t) +\int _{ X(t)}^{\infty }\!\mathrm{d}x\int _{ \mathbb{R}}\!\mathrm{d}v\;vf(x,v;t)\right ] \\ & & \quad =\int _{\mathbb{R}}\!\mathrm{d}v\;vf^{L}(X(t),v;t)V (t) -\int _{ \mathbb{R}}\!\mathrm{d}v\;vf^{R}(X(t),v;t)V (t) \\ & & \qquad +\int _{\mathbb{R}}\!\mathrm{d}v\int _{-\infty }^{X(t)}\!\mathrm{d}x\;v(-v\partial _{ x}f(x,v;t)) +\int _{\mathbb{R}}\!\mathrm{d}v\int _{X(t)}^{\infty }\!\mathrm{d}x\;v(-v\partial _{ x}f(x,v;t)) \\ & & \quad =\int _{\mathbb{R}}\!\mathrm{d}v\;vV (t)f^{L}(X(t),v;t) -\int _{ \mathbb{R}}\!\mathrm{d}v\;vV (t)f^{R}(X(t),v;t) \\ & & \qquad -\int _{\mathbb{R}}\!\mathrm{d}v\;v^{2}f^{L}(X(t),v;t) +\int _{ \mathbb{R}}\!\mathrm{d}v\;v^{2}f^{R}(X(t),v;t) \\ & & \quad =\int _{\mathbb{R}}\!\mathrm{d}v\;v(V (t) - v)f^{L}(X(t),v;t) -\int _{ \mathbb{R}}\!\mathrm{d}v\;v(V (t) - v)f^{R}(X(t),v;t)\;.{}\end{array}$$
(3.128)

We consider first the integral involving f L, taking into account the fact that

$$\displaystyle\begin{array}{rcl} f^{L}(X(t),v;t)& =& f_{ -}^{L}(X(t),v;t)\,\chi (v \geq V (t)) \\ & & +f_{+}^{L}(X(t),v;t)\,\chi (v < V (t))\;,{}\end{array}$$
(3.129)

with the definition of f ± given in (3.7), since for v ≥ V (t) the velocity v is necessarily a pre-collisional velocity (we are on the left side of the obstacle), while for v < V (t) the velocity v is a post-collisional velocity. Hence,

$$\displaystyle\begin{array}{rcl} \int _{\mathbb{R}}\!\mathrm{d}v\;v(V (t) - v)f^{L}(X(t),v;t)& =& \int _{ -\infty }^{V (t)}\!\mathrm{d}v'\,v'(V (t) - v')f_{ +}^{L}(X(t),v';t) \\ & & +\int _{V (t)}^{\infty }\!\mathrm{d}v\;v(V (t) - v)f_{ -}^{L}(X(t),v;t)\;.{}\end{array}$$
(3.130)

Performing the change of variable \(v' = 2V (t) - v\) in the first integral in the right-hand side of (3.130), we have,

$$\displaystyle\begin{array}{rcl} & & \int _{\mathbb{R}}\!\mathrm{d}v\;v(V (t) - v)f^{L}(X(t),v;t) \\ & & \quad = -\int _{\infty }^{V (t)}\!\mathrm{d}v\;(2V (t) - v)(-V (t) + v)f_{ +}^{L}(X(t),2V (t) - v;t) \\ & & \qquad +\int _{ V (t)}^{\infty }\!\mathrm{d}v\;v(V (t) - v)f_{ -}^{L}(X(t),v;t)\;, {}\end{array}$$
(3.131)

and, for the continuity of f L along the collisions, by (3.6) it is

$$\displaystyle{ f_{+}^{L}(X(t),2V (t) - v;t) = f_{ -}^{L}(X(t),v;t)\;. }$$
(3.132)

Therefore,

$$\displaystyle\begin{array}{rcl} & & \int _{\mathbb{R}}\!\mathrm{d}v\;v(V (t) - v)f^{L}(X(t),v;t) \\ & & \quad =\int _{ V (t)}^{\infty }\!\mathrm{d}v\;(V (t) - v)(v - 2V (t) + v)f_{ -}^{L}(X(t),v;t) \\ & & \quad = -2\int _{V (t)}^{\infty }\!\mathrm{d}v\;(V (t) - v)^{2}f_{ -}^{L}(X(t),v;t)\;. {}\end{array}$$
(3.133)

The integral with f R in (3.128) can be handled in the same way, arriving at

$$\displaystyle\begin{array}{rcl} & & \frac{\mathrm{d}} {\mathrm{d}t}\left [\int _{-\infty }^{X(t)}\!\mathrm{d}x\int _{ \mathbb{R}}\!\mathrm{d}v\;vf(x,v;t) +\int _{ X(t)}^{\infty }\!\mathrm{d}x\int _{ \mathbb{R}}\!\mathrm{d}v\;vf(x,v;t)\right ] \\ & & \quad = 2\int _{-\infty }^{V (t)}\!\mathrm{d}v\;(V (t) - v)^{2}f_{ -}^{R}(X(t),v;t) \\ & & \qquad - 2\int _{V (t)}^{\infty }\!\mathrm{d}v\;(V (t) - v)^{2}f_{ -}^{L}(X(t),v;t)\;, {}\end{array}$$
(3.134)

which is the friction term (3.9) in the one-dimensional case.

We give a second derivation of the model (always in one dimension), computing the momentum exchanged by collisions between gas particles and body. We think at (point-like) light gas particles of mass m and velocity v, hitting a heavy (point-like) body of mass M and velocity V. The law of elastic collision reads,

$$\displaystyle{ V ' = V + \frac{2m} {M + m}(v - V )\;,\qquad v' = V -\frac{M - m} {M + m}(v - V )\;, }$$
(3.135)

where V ′ and v′ are the outgoing velocities. As usual in the mean field limit, we assume the mass of any light particle to be \(m = \frac{1} {N} \ll M\), N being the total number of gas particles, so that, by (3.135), we have,

$$\displaystyle{ V ' \approx V + \frac{2} {N\,M}(v - V )\;,\qquad v' \approx 2V - v\;. }$$
(3.136)

We now evaluate the variation of velocity Δ V of the body in the time interval [t, t +Δ t], due to the collisions with the gas particles and the influence of an external constant force E. It is

$$\displaystyle{ \varDelta V = E\varDelta t - \frac{1} {N}\sum _{j\in I^{+}(\varDelta t)} \frac{2} {M}\vert v_{j} - V \vert + \frac{1} {N}\sum _{j\in I^{-}(\varDelta t)} \frac{2} {M}\vert v_{j} - V \vert + h\;, }$$
(3.137)

where h denotes a term o(Δ t) and I ±(Δ t) denote the indices of the light particles which are colliding from the right v j  < V and from the left v j  ≥ V respectively.

We finally apply our mean-field hypothesis by setting

$$\displaystyle{ \frac{1} {N}\sum _{j\in I^{\pm }(\varDelta t)} \frac{2} {M}\vert v_{j} - V \vert =\varDelta t \frac{2} {M}\int \!\mathrm{d}v\;\vert v - V \vert ^{2}f^{\pm }(X,v;t)\;. }$$
(3.138)

Taking the limit Δ t → 0, we obtain Eqs. (3.8)–(3.9). We also set M = 1, M being an irrelevant constant.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buttà, P., Cavallaro, G., Marchioro, C. (2015). Motion of a Body Immersed in a Vlasov System. In: Mathematical Models of Viscous Friction. Lecture Notes in Mathematics, vol 2135. Springer, Cham. https://doi.org/10.1007/978-3-319-14759-8_3

Download citation

Publish with us

Policies and ethics