Skip to main content

Semi Log-Concave Markov Diffusions

  • Chapter
  • First Online:
Séminaire de Probabilités XLVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2123))

Abstract

In this paper we intend to give a comprehensive approach of functional inequalities for diffusion processes under various “curvature” assumptions. One of them coincides with the usual Γ 2 curvature of Bakry and Emery in the case of a (reversible) drifted Brownian motion, but differs for more general diffusion processes. Our approach using simple coupling arguments together with classical stochastic tools, allows us to obtain new results, to recover and to extend already known results, giving in many situations explicit (though non optimal) bounds. In particular, we show new results for gradient/semigroup commutation in the log concave case. Some new convergence to equilibrium in the granular media equation is also exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer, Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses, vol. 10 (Société Mathématique de France, Paris, 2000)

    Google Scholar 

  2. D. Bakry, F. Barthe, P. Cattiaux, A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures. Electon. Commun. Probab. 13, 60–66 (2008)

    MathSciNet  MATH  Google Scholar 

  3. D. Bakry, P. Cattiaux, A. Guillin, Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254, 727–759 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Bakry, I. Gentil, L. Ledoux, On Harnack inequalities and optimal transportation. Preprint, available on ArXiv (2012)

    Google Scholar 

  5. D. Bakry, I. Gentil, L. Ledoux, Analysis and Geometry of Markov diffusion operators, Springer, Grundlehren der mathematischen Wissenschaften, Vol. 348 (2014)

    Google Scholar 

  6. K. Ball, F. Barthe, A. Naor, Entropy jumps in the presence of a spectral gap. Duke Math. J. 119, 41–63 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. S.G. Bobkov, Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27(4), 1903–1921 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.G. Bobkov, Spectral gap and concentration for some spherically symmetric probability measures, in Geometric Aspects of Functional Analysis, Israel Seminar 2000–2001. Lecture Notes in Mathematics, vol. 1807 (Springer, Berlin, 2003), pp. 37–43

    Google Scholar 

  9. S.G. Bobkov, I. Gentil, M. Ledoux, Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pure Appl. 80(7), 669–696 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Bolley, I. Gentil, A. Guillin, Convergence to equilibrium in Wasserstein distance for Fokker-Planck equation. J. Funct. Anal. 263(8), 2430–2457 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Bolley, I. Gentil, A. Guillin, Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208(2), 429–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Bolley, A. Guillin, F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. Math. Model. Numer. Anal. 44(5), 867–884 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Borell, Diffusion equations and geometric inequalities. Potential Anal. 12, 49–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Cattiaux, A pathwise approach of some classical inequalities. Potential Anal. 20, 361–394 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Cattiaux, Hypercontractivity for perturbed diffusion semi-groups. Ann. Fac. des Sc. de Toulouse 14(4), 609–628 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Cattiaux, I. Gentil, A. Guillin, Weak logarithmic-Sobolev inequalities and entropic convergence. Probab. Theory Relat. Fields 139, 563–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Cattiaux, A. Guillin, On quadratic transportation cost inequalities. J. Math. Pures Appl. 88(4), 341–361 (2006)

    MathSciNet  Google Scholar 

  18. P. Cattiaux, A. Guillin, F. Malrieu, Probabilistic approach for granular media equations in the non uniformly convex case. Probab. Theory Relat. Fields 140, 19–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Cattiaux, A. Guillin, P.A. Zitt, Poincaré inequalities and hitting times. Ann. Inst. Henri Poincaré. Probab. Stat. 49(1), 95–118 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Cattiaux, C. Léonard, Minimization of the Kullback information of diffusion processes. Ann. Inst. Henri Poincaré. Prob. Stat. 30(1), 83–132 (1994); and correction in Ann. Inst. Henri Poincaré 31, 705–707 (1995)

    Google Scholar 

  21. J.F. Collet, F. Malrieu, Logarithmic Sobolev inequalities for inhomogeneous semigroups. ESAIM Probab. Stat. 12, 492–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Djellout, A. Guillin, L. Wu, Transportation cost information inequalities for random dynamical systems and diffusions. Ann. Probab. 334, 1025–1028 (2002)

    Google Scholar 

  23. A. Eberle, Reflection coupling and Wasserstein contractivity without convexity. C. R. Acad. Sci. Paris Ser. I 349, 1101–1104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Eberle, Couplings, distances and contractivity for diffusion processes revisited. Available on Math. arXiv:1305.1233 [math.PR] (2013)

    Google Scholar 

  25. J. Fontbona, B. Jourdain, A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations. Available on Math. arXiv:1107.3300 [math.PR] (2011)

    Google Scholar 

  26. N. Gozlan, C. Léonard, Transport inequalities—a survey. Markov Process. Relat. Fields 16, 635–736 (2010)

    MATH  Google Scholar 

  27. A. Guillin, F.-Y. Wang, Degenerate Fokker-Planck equations: Bismut formula, gradient estimate and Harnack inequality. J. Differ. Equ. 253(1), 20–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Guillin, C. Léonard, L. Wu, N. Yao, Transportation-information inequalities for Markov processes. Probab. Theory Relat. Fields 144(3–4), 669–695 (2009)

    Article  MATH  Google Scholar 

  29. N. Huet, Isoperimetry for spherically symmetric log-concave probability measures. Rev. Mat. Iberoam. 27(1), 93–122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edn. (North-Holland, Amsterdam, 1988)

    Google Scholar 

  31. A.V. Kolesnikov, On diffusion semigroups preserving the log-concavity. J. Funct. Anal. 186(1), 196–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited, in Séminaire de Probabilités XXXV. Lecture Notes in Mathematics, vol. 1755 (Springer, New York, 2001), pp. 167–194

    Google Scholar 

  33. J. Lehec, Representation formula for the entropy and functional inequalities. Ann. Inst. Henri Poincaré. Prob. Stat. 49(3), 885–899 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Lindvall, L.C.G. Rogers, Coupling of multidimensional diffusions by reflection. Ann. Probab. 14, 860–872 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stoch. Process. Appl. 95(1), 109–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Otto, C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Pitman, M. Yor, Bessel processes and infinitely divisible laws, in Stochastic Integrals. Lecture Notes in Mathematics, vol. 851 (Springer, New York, 1980), pp. 285–370

    Google Scholar 

  38. P.E. Protter, Stochastic Integration and Differential Equations. Stochastic Modelling and Applied Probability, vol. 21 (Springer, Berlin, 2005)

    Google Scholar 

  39. M. Röckner, F.Y. Wang, Weak Poincaré inequalities and L 2-convergence rates of Markov semigroups. J. Funct. Anal. 185(2), 564–603 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Röckner, F.Y. Wang, Log-Harnack inequality for stochastic differential equations in Hilbert spaces and its consequences. Anal. Quant. Probab. Relat. Top. 13, 27–37 (2010)

    Article  MATH  Google Scholar 

  41. C. Villani, Hypocoercivity. Mem. Am. Math. Soc. 202(950), iv+141 (2009)

    Google Scholar 

  42. C. Villani, Optimal Transport. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338 (Springer, Berlin, 2009)

    Google Scholar 

  43. M. Von Renesse, K.T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MATH  Google Scholar 

  44. F.Y. Wang, Functional Inequalities, Markov Processes and Spectral Theory (Science Press, Beijing, 2004)

    Google Scholar 

  45. F.Y. Wang, T. Zhang, Log-Harnack inequality for mild solutions of SPDEs with strongly multiplicative noise. Available on Math. arXiv:1210.6416 [math.PR] (2012)

    Google Scholar 

  46. C. Yi, On the first passage time distribution of an Ornstein-Uhlenbeck process. Quant. Fin. 10(9), 957–960 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cattiaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cattiaux, P., Guillin, A. (2014). Semi Log-Concave Markov Diffusions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVI. Lecture Notes in Mathematics(), vol 2123. Springer, Cham. https://doi.org/10.1007/978-3-319-11970-0_9

Download citation

Publish with us

Policies and ethics