Skip to main content

G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion

  • Chapter
  • First Online:
Séminaire de Probabilités XLVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2123))

Abstract

The present article is devoted to the study of sample paths of G-Brownian motion and stochastic differential equations (SDEs) driven by G-Brownian motion from the viewpoint of rough path theory. As the starting point, by using techniques in rough path theory, we show that quasi-surely, sample paths of G-Brownian motion can be enhanced to the second level in a canonical way so that they become geometric rough paths of roughness 2 < p < 3. This result enables us to introduce the notion of rough differential equations (RDEs) driven by G-Brownian motion in the pathwise sense under the general framework of rough paths. Next we establish the fundamental relation between SDEs and RDEs driven by G-Brownian motion. As an application, we introduce the notion of SDEs on a differentiable manifold driven by G-Brownian motion and construct solutions from the RDE point of view by using pathwise localization technique. This is the starting point of developing G-Brownian motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin. The last part of this article is devoted to such construction for a wide and interesting class of G-functions whose invariant group is the orthogonal group. In particular, we establish the generating nonlinear heat equation for such G-Brownian motion on a Riemannian manifold. We also develop the Euler-Maruyama approximation for SDEs driven by G-Brownian motion of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Azagra, J. Ferrera, B. Sanz, Viscosity solutions to second order partial differential equations on riemannian manifolds. J. Differ. Equ. 245(2), 307–336 (2009)

    Article  MathSciNet  Google Scholar 

  2. S. Chern, W. Chen, K. Lam, Lectures on Differential Geometry (World Scientific, Singapore, 1999)

    Book  MATH  Google Scholar 

  3. G. Choquet, Theory of capacities. Ann. Inst. Fourier. 5, 87 (1953)

    MathSciNet  Google Scholar 

  4. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. de Rham, Riemannian Manifolds (Springer, New York, 1984)

    Google Scholar 

  6. C. Dellacherie, Capacités et Processus Stochastiques (Springer, New York, 1972)

    MATH  Google Scholar 

  7. L. Denis, M. Hu, S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal. 34(2), 139–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. K.D. Elworthy, Stochastic Differential Equations on Manifolds (Springer, New York, 1998)

    Google Scholar 

  9. P.K. Friz, N.B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  10. F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochast. Process. Appl. 119(10), 3356–3382 (2009)

    Article  MATH  Google Scholar 

  11. B.M. Hambly, T.J. Lyons, Stochastic area for Brownian motion on the sierpinski gasket. Ann. Probab. 26(1), 132–148 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. E.P. Hsu, Stochastic Analysis on Manifolds (American Mathematical Society, Providence, 2002)

    MATH  Google Scholar 

  13. N. Ikeda, S.Watanabe, Stochastic Differential Equations and Diffusion Processes (North-Holland, Amsterdam, 1989)

    Google Scholar 

  14. M. Kac, On distributions of certain wiener functionals. Trans. Am. Math. Soc. 65(1), 1–13 (1949)

    Article  MATH  Google Scholar 

  15. I.A. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus (Springer, New York, 1991)

    MATH  Google Scholar 

  16. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, I and II (Interscience, New York, 1963/1969)

    Google Scholar 

  17. T.J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215–310 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. T.J. Lyons, Z. Qian, System Control and Rough Paths (Oxford University Press, Oxford, 2002)

    Book  MATH  Google Scholar 

  19. T.J. Lyons, C. Michael, T. Lévy, Differential Equations Driven by Rough Paths (Springer, Berlin, 2007)

    MATH  Google Scholar 

  20. K. Nomizu, H. Ozeki, The existence of complete riemannian metrics. Proc. Am. Math. Soc. 12(6), 889–891 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. É. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. É. Pardoux, S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications (Springer, New York, 1992), pp. 200–217

    Google Scholar 

  23. É. Pardoux, S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields. 98(2), 209–227 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Peng, Backward SDE and related g-expectation, in Pitman Research Notes in Mathematics series, vol. 364, ed. by N. El Karoui, L. Mazliak (1997), pp. 141–159

    Google Scholar 

  25. S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type. Stochast. Anal. Appl. 2, 541–567 (2007)

    Google Scholar 

  26. S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochast. Process. Appl. 118(12), 2223–2253 (2008)

    Article  MATH  Google Scholar 

  27. S. Peng, Nonlinear expectations and stochastic calculus under uncertainty. Preprint, arXiv: 1002.4546 (2010)

    Google Scholar 

  28. E. Wong, M. Zakai, On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3(2), 213–229 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Yosida, Functional Analysis (Springer, New York, 1980)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Shige Peng for so many valuable suggestions on the present article. The authors are supported by the Oxford-Man Institute at the University of Oxford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongmin Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geng, X., Qian, Z., Yang, D. (2014). G-Brownian Motion as Rough Paths and Differential Equations Driven by G-Brownian Motion. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVI. Lecture Notes in Mathematics(), vol 2123. Springer, Cham. https://doi.org/10.1007/978-3-319-11970-0_6

Download citation

Publish with us

Policies and ethics