Skip to main content

Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

Chaining techniques show that if X is an isotropic log-concave random vector in \(\mathbb{R}^{n}\) and Γ is a standard Gaussian vector then

$$\displaystyle{\mathbb{E}\Vert X\Vert \leq Cn^{1/4}\mathbb{E}\Vert \varGamma \Vert }$$

for any norm \(\Vert \cdot \Vert\), where C is a universal constant. Using a completely different argument we establish a similar inequality relying on the thin-shell constant

$$\displaystyle{\sigma _{n} =\sup {\Bigl ( \sqrt{\mathrm{Var }(\vert X\vert )};\ X\text{ isotropic and log-concave on }\mathbb{R}^{n}\Bigr )}.}$$

In particular, we show that if the thin-shell conjecture σ n  = O(1) holds, then n 1∕4 can be replaced by log(n) in the inequality. As a consequence, we obtain certain bounds for the mean-width, the dual mean-width and the isotropic constant of an isotropic convex body. In particular, we give an alternative proof of the fact that a positive answer to the thin-shell conjecture implies a positive answer to the slicing problem, up to a logarithmic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bourgain, On the distribution of polynomials on high dimensional convex sets, in Geometric Aspects of Functional Analysis, ed. by J. Lindenstrauss, V.D. Milman. Lecture Notes in Mathematics, vol. 1469 (Springer, Berlin, 1991), pp. 127–137

    Google Scholar 

  2. H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme. Geom. Funct. Anal. 23(2), 532–569 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Eldan, B. Klartag, Approximately gaussian marginals and the hyperplane conjecture, in Concentration, Functional Inequalities and Isoperimetry. Contemporary Mathematics, vol. 545 (American Mathematical Society, Providence, 2011), pp. 55–68.

    Google Scholar 

  5. B. Fleury, O. Guédon, G. Paouris, A stability result for mean width of Lp-centroid bodies. Adv. Math. 214(2), 865–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Guédon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21(5), 1043–1068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Hargé, A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces. Probab. Theory Relat. Fields 130(3), 415–440 (2004)

    Article  MATH  Google Scholar 

  8. B. Klartag, On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16(6), 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Klartag, A central limit theorem for convex sets. Invent. Math. 168, 91–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  11. C.A. Rogers, G.C. Shephard, The difference body of a convex body. Arch. Math. (Basel) 8, 220–233 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Talagrand, The Generic Chaining. Upper and Lower Bounds of Stochastic Processes. Springer Monographs in Mathematics (Springer, Berlin, 2005)

    Google Scholar 

  13. C. Villani, Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338 (Springer, Berlin, 2009)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Bo’az Klartag for a fruitful discussion and Bernard Maurey for allowing them to use an unpublished result of his.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Eldan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eldan, R., Lehec, J. (2014). Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_9

Download citation

Publish with us

Policies and ethics