Skip to main content

Remarks on the KLS Conjecture and Hardy-Type Inequalities

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary functions on a convex body \(\varOmega \subset \mathbb{R}^{n}\), not necessarily vanishing on the boundary ∂ Ω. This reduces the study of the Neumann Poincaré constant on Ω to that of the cone and Lebesgue measures on ∂ Ω; these may be bounded via the curvature of ∂ Ω. A second reduction is obtained to the class of harmonic functions on Ω. We also study the relation between the Poincaré constant of a log-concave measure μ and its associated K. Ball body K μ . In particular, we obtain a simple proof of a conjecture of Kannan–Lovász–Simonovits for unit-balls of p n, originally due to Sodin and Latała–Wojtaszczyk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Ball, Logarithmically concave functions and sections of convex sets in \(\mathbb{R}^{n}\). Studia Math. 88(1), 69–84 (1988)

    MathSciNet  MATH  Google Scholar 

  2. K. Ball, Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44(2), 351–359 (1991)

    Article  MATH  Google Scholar 

  3. R.E. Barlow, A.W. Marshall, F. Proschan, Properties of probability distributions with monotone hazard rate. Ann. Math. Stat. 34, 375–389 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.D. Benguria, Isoperimetric inequalities for eigenvalues of the Laplacian, in Entropy and the Quantum II. Contemporary Mathematics, vol. 552 (American Mathematical Society, Providence, 2011), pp. 21–60

    Google Scholar 

  5. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. L.A. Caffarelli, Interior W 2, p estimates for solutions of the Monge-Ampère equation. Ann. Math. (2) 131(1), 135–150 (1990)

    Google Scholar 

  7. L.A. Caffarelli, Boundary regularity of maps with convex potentials. Commun. Pure Appl. Math. 45(9), 1141–1151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. L.A. Caffarelli, The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Cattiaux, A. Guillin, Functional inequalities via Lyapunov conditions, in Proceedings of the Summer School on Optimal Transport, Grenoble (2009). arXiv:1001.1822

    Google Scholar 

  10. A. Colesanti, From the Brunn-Minkowski inequality to a class of Poincaré-type inequalities. Commun. Contemp. Math. 10(5), 765–772 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme. Geom. Funct. Anal. 23(2), 532–569 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Figalli, Quantitative isoperimetric inequalities, with applications to the stability of liquid drops and crystals, in Concentration, Functional Inequalities and Isoperimetry. Contemporary Mathematics, vol. 545 (American Mathematical Society, Providence, 2011), pp. 77–87

    Google Scholar 

  13. G.B. Folland, Introduction to Partial Differential Equations, 2nd edn. (Princeton University Press, Princeton, 1995)

    MATH  Google Scholar 

  14. M. Fradelizi, Sections of convex bodies through their centroid. Arch. Math. (Basel) 69(6), 515–522 (1997)

    Google Scholar 

  15. N. Ghoussoub, A. Moradifam, Functional Inequalities: New Perspectives and New Applications. Mathematical Surveys and Monographs, vol. 187 (American Mathematical Society, Providence, 2013)

    Google Scholar 

  16. O. Guédon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures. Geom. Funct. Anal. 21(5), 1043–1068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13(3–4), 541–559 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Klartag, On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16(6), 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Klartag, E. Milman, On volume distribution in 2-convex bodies. Isr. J. Math. 164, 221–249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Knothe, Contributions to the theory of convex bodies. Mich. Math. J. 4, 39–52 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  21. A.V. Kolesnikov, E. Milman, Poincaré and Brunn-Minkowski inequalities on weighted manifolds with boundary. Submitted (2014). arxiv.org/abs/1310.2526

    Google Scholar 

  22. R. Latała, J.O. Wojtaszczyk, On the infimum convolution inequality. Studia Math. 189(2), 147–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Ledoux, The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  24. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.J. McCann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Milman, On the role of convexity in isoperimetry, spectral-gap and concentration. Invent. Math. 177(1), 1–43 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. V.D. Milman, A. Pajor, Isotropic position and interia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376 (Springer, Berlin, 1987–1988), pp. 64–104

    Google Scholar 

  28. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986). With an appendix by M. Gromov

    Google Scholar 

  29. E. Milman, S. Sodin, An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies. J. Funct. Anal. 254(5), 1235–1268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Paouris, Small ball probability estimates for log-concave measures. Trans. Am. Math. Soc. 364(1), 287–308 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Schechtman, J. Zinn, Concentration on the \(l_{p}^{n}\) ball, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1745 (Springer, Berlin, 2000), pp. 245–256

    Google Scholar 

  32. S. Sodin, An isoperimetric inequality on the p balls. Ann. Inst. H. Poincaré Probab. Stat. 44(2), 362–373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1995). Reprint of the second (1944) edition

    Google Scholar 

Download references

Acknowledgements

We would like to thank Bo’az Klartag for his interest and fruitfull discussions. The first-named author was supported by RFBR project 12-01-33009 and the DFG project CRC 701. This study (research grant No 14-01-0056) was supported by The National Research University–Higher School of Economics’ Academic Fund Program in 2014/2015. The second-named author was supported by ISF (grant no. 900/10), BSF (grant no. 2010288), Marie-Curie Actions (grant no. PCIG10-GA-2011-304066) and the E. and J. Bishop Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Milman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolesnikov, A.V., Milman, E. (2014). Remarks on the KLS Conjecture and Hardy-Type Inequalities. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_18

Download citation

Publish with us

Policies and ethics