Skip to main content

M-Estimates for Isotropic Convex Bodies and Their L q -Centroid Bodies

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2116))

Abstract

Let K be a centrally-symmetric convex body in \(\mathbb{R}^{n}\) and let \(\|\cdot \|\) be its induced norm on \(\mathbb{R}^{n}\). We show that if K ⊇ rB 2 n then:

$$\displaystyle{\sqrt{n}M(K)\leqslant C\sum _{k=1}^{n} \frac{1} {\sqrt{k}}\min \left (\frac{1} {r}, \frac{n} {k}\log \Big(e + \frac{n} {k}\Big) \frac{1} {v_{k}^{-}(K)}\right )}$$

where \(M(K) =\int _{S^{n-1}}\|x\|\,d\sigma (x)\) is the mean-norm, C > 0 is a universal constant, and v k (K) denotes the minimal volume-radius of a k-dimensional orthogonal projection of K. We apply this result to the study of the mean-norm of an isotropic convex body K in \(\mathbb{R}^{n}\) and its L q -centroid bodies. In particular, we show that if K has isotropic constant L K then:

$$\displaystyle{M(K)\leqslant \frac{C\log ^{2/5}(e + n)} {\root{10}\of{n}L_{K}}.}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Artstein, V.D. Milman, S.J. Szarek, Duality of metric entropy. Ann. Math. 159, 1313–1328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. K.M. Ball, Isometric problems in p and sections of convex sets. Ph.D. dissertation, Trinity College, Cambridge, 1986

    Google Scholar 

  3. K.M. Ball, Logarithmically concave functions and sections of convex sets in \(\mathbb{R}^{n}\). Stud. Math. 88, 69–84 (1988)

    MATH  Google Scholar 

  4. L. Berwald, Verallgemeinerung eines Mittelwertsatzes von J. Favard für positive konkave Funktionen. Acta Math. 79, 17–37 (1947)

    MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Am. J. Math. 108, 1467–1476 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, On the distribution of polynomials on high dimensional convex sets, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1469 (Springer, Berlin, 1991), pp. 127–137

    Google Scholar 

  7. J. Bourgain, B. Klartag, V.D. Milman, Symmetrization and isotropic constants of convex bodies, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850 (Springer, Berlin, 2002–2003), pp. 101–115

    Google Scholar 

  8. J. Bourgain, V.D. Milman, New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^{n}\). Invent. Math. 88, 319–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou, Geometry of Isotropic Convex Bodies. Mathematical Surveys and Monographs, vol. 196 (American Mathematical Society, Providence, 2014)

    Google Scholar 

  10. B. Carl, Entropy numbers, s-numbers, and eigenvalue problems. J. Funct. Anal. 41, 290–306 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Figiel, N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces. Israel J. Math. 33, 155–171 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Giannopoulos, P. Stavrakakis, A. Tsolomitis, B.-H. Vritsiou, Geometry of the L q -centroid bodies of an isotropic log-concave measure. Trans. Am. Math. Soc. (to appear)

    Google Scholar 

  13. B. Klartag, A geometric inequality and a low M-estimate. Proc. Am. Math. Soc. 132, 2619–2628 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Klartag, On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, 1274–1290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. B. Klartag, Uniform almost sub-Gaussian estimates for linear functionals on convex sets. Algebra i Analiz 19, 109–148 (2007)

    MathSciNet  Google Scholar 

  16. B. Klartag, E. Milman, Centroid bodies and the logarithmic laplace transform – a unified approach. J. Funct. Anal. 262, 10–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Klartag, V.D. Milman, Rapid Steiner symmetrization of most of a convex body and the slicing problem. Comb. Probab. Comput. 14, 829–843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. D.R. Lewis, Ellipsoids defined by Banach ideal norms. Mathematika 26, 18–29 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Litvak, V.D. Milman, A. Pajor, N. Tomczak-Jaegermann, Entropy extension. Funct. Anal. Appl. 40, 298–303 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Lutwak, D. Yang, G. Zhang, L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    MathSciNet  MATH  Google Scholar 

  21. E. Milman, On the mean width of isotropic convex bodies and their associated L p -centroid bodies. Int. Math. Res. Not. doi: 10.1093/imrn/rnu040

    Google Scholar 

  22. V.D. Milman, Geometrical inequalities and mixed volumes in the local theory of Banach spaces. Astérisque 131, 373–400 (1985)

    MathSciNet  Google Scholar 

  23. V.D. Milman, A note on a low M -estimate, in Geometry of Banach Spaces, Proceedings of a Conference Held in Strobl, Austria, 1989, ed. by P.F. Müller, W. Schachermayer. LMS Lecture Note Series, vol. 158 (Cambridge University Press, Cambridge, 1990), pp. 219–229

    Google Scholar 

  24. V.D. Milman, A. Pajor, Isotropic position and interia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1376 (Springer, Berlin, 1987–1988), pp. 64–104

    Google Scholar 

  25. V.D. Milman, G. Pisier, Gaussian processes and mixed volumes. Ann. Probab. 15, 292–304 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

    Google Scholar 

  27. A. Pajor, N. Tomczak-Jaegermann, Subspaces of small codimension of finite-dimensional Banach spaces. Proc. Am. Math. Soc. 97, 637–642 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Paouris, Concentration of mass in convex bodies. Geom. Funct. Anal. 16, 1021–1049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces. Ann. Math. 115, 375–392 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Pisier, A new approach to several results of V. Milman. J. Reine Angew. Math. 393, 115–131 (1989)

    MathSciNet  MATH  Google Scholar 

  31. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, vol. 94 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  32. B.-H. Vritsiou, Further unifying two approaches to the hyperplane conjecture. Int. Math. Res. Not. doi: 10.1093/imrn/rns263

    Google Scholar 

Download references

Acknowledgements

The first named author acknowledges support from the programme “APIΣTEIA II” of the General Secretariat for Research and Technology of Greece. The second named author is supported by ISF (grant no. 900/10), BSF (grant no. 2010288), Marie-Curie Actions (grant no. PCIG10-GA-2011-304066) and the E. and J. Bishop Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Milman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giannopoulos, A., Milman, E. (2014). M-Estimates for Isotropic Convex Bodies and Their L q -Centroid Bodies. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2116. Springer, Cham. https://doi.org/10.1007/978-3-319-09477-9_13

Download citation

Publish with us

Policies and ethics