Skip to main content

Noradrenaline and Post-traumatic Stress Disorder

  • Living reference work entry
  • First Online:
Comprehensive Guide to Post-Traumatic Stress Disorder

Abstract

Noradrenaline (NA), a well known catecholamine has become the key transmitter involved in the generation of the autonomic symptoms present in the post-traumatic stress disorder (PTSD). It is present in the specialized noradrenergic pathways and in the cell nuclei located in the central nervous system that are involved in the pathophysiology of the disease. The locus coeruleus (LC) in the rostral pons is a region that has high NA content and it forms the center of the neurochemical traffic of PTSD. Experiments in rats have shown that NA content is increased in the LC in “cat litter” tests. NA levels in the cerebrospinal fluid increase in response to psychological stressors. The hippocampus receives NA only from the LC and the LC also sends efferents to the neocortex and the amygdala. The β adrenergic receptors located in the lateral amygdala have been shown to be involved in fear conditioning. Projections arising from the LC also innervate the paraventricular nucleus of the hypothalamus, an important structure acting as a sympathetic premotor nucleus, a central controller of autonomic functions. The LC also receives reciprocal projections from these regions. Human data have also revealed that people with high catecholamine levels are more prone to develop PTSD. It may be accepted that excessive adrenergic activation following a traumatic event may enhance the memory consolidation of the event and increase the frequency of re-experiencing the event upon confronting a reminder. The activity of NA present in synapses is terminated by NA transporters (NET). Polymorphisms in enzymes like catechol-O-methyl transferase which is responsible for the cleavage of NA and in the human NET may also play important roles in the development and maintenance of the disease. Various agents affecting noradrenergic receptors may further become therapeutic tools. Yohimbine, an α2 adrenergic receptor antagonist can induce flashbacks and as the distribution of adrenergic α2c receptor is restricted to the CNS, this subtype has been the subject of many investigations of psychiatric diseases including PTSD. As α2 receptors are presynaptic receptors and control the release of NA, inhibition of these presynaptic receptors may also cause an increase in NA synaptic levels. Clinical trials to date have shown promising results for prazosin, an α1 adrenergic receptor blocker. Unfortunately, the trials performed with guanfacine, an α2 adrenergic receptor agonist, were not effective in PTSD. Propranolol, a nonselective β adrenergic receptor antagonist may help to prevent the disease if administered early following the trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A:

Adrenaline

BLA:

Basolateral nucleus of the amygdala

CAPS:

Clinical-administered PTSD scale

CeA:

Central nucleus of amygdala

CNS:

Central nervous system

COMT:

Catechol-O-methyltransferase

CRF:

Corticotropin-releasing factor

DA:

Dopamine

DOPAC:

3,4-dihydroxyphenylacetic acid

ENT:

Extraneuronal transporter or uptake 2

GABA:

Gamma-aminobutyric acid

HNET:

Human norepinephrine transporter

LC:

Locus coeruleus

NA:

Noradrenaline

NET:

Norepinephrine transporter, previously called uptake 1

OCT1, OCT2, OCT3:

Organic cation transporters 1, 2, 3

PTSD:

Posttraumatic stress disorder

PVN:

Paraventricular nucleus of the hypothalamus

VMAT2:

Vesicular monoamine transporter

References

  • Abercrombie ED, Jacobs BL. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci. 1987a;7(9):2837–43.

    PubMed  Google Scholar 

  • Abercrombie ED, Jacobs BL. Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. II Adaptation to chronically presented stressful stimuli. J Neurosci. 1987b;7(9):2844–8.

    PubMed  Google Scholar 

  • Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry. 2005;57:1377–84.

    Article  PubMed  Google Scholar 

  • Arnsten AF, Steere JC, Hunt RD. The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53(5):448–55.

    Article  PubMed  Google Scholar 

  • Asan E. The catecholaminergic innervation of the rat amygdala. Adv Anat Embryol Cell Biol. 1998;142:1–118.

    Article  PubMed  Google Scholar 

  • Aston-Jones G, Shipley MT, Chouvet G, et al. Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res. 1991;88:47–75.

    Article  PubMed  Google Scholar 

  • Bajor LA, Ticlea AN, Osser DN. The psychopharmacology algorithm project at the Harvard South Shore Program: an update on posttraumatic stress disorder. Harv Rev Psychiatry. 2011;19(5):240–58.

    Article  PubMed  Google Scholar 

  • Berridge CW, Abercrombie ED. Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis. Neuroscience. 1999;93(4):1263–70.

    Article  PubMed  Google Scholar 

  • Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42(1):33–84.

    Article  PubMed  Google Scholar 

  • Björklund M, Sirviö J, Puoliväli J, et al. Alpha2C-adrenoceptor-overexpressing mice are impaired in executing nonspatial and spatial escape strategies. Mol Pharmacol. 1998;54(3):569–76.

    PubMed  Google Scholar 

  • Bouret S, Duvel A, Onat S, Sara SJ. Phasic activation of locus ceruleus neurons by the central nucleus of the amygdala. J Neurosci. 2003;23(8):3491–7.

    PubMed  Google Scholar 

  • Bremner JD, Licinio J, Darnell A, et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry. 1997;154(5):624–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Brownstein MJ, Hoffman BJ. Neurotransmitter transporters. Recent Prog Horm Res. 1994;49:27–42.

    PubMed  Google Scholar 

  • Brunet A, Poundja J, Tremblay J, et al. Trauma reactivation under the influence of propranolol decreases posttraumatic stress symptoms and disorder: 3 open-label trials. J Clin Psychopharmacol. 2011;31(4):547–50.

    Article  PubMed  Google Scholar 

  • Buckley TC, Kaloupek DG. A meta-analytic examination of basal cardiovascular activity in posttraumatic stress disorder. Psychosom Med. 2001;63:585–94.

    Article  PubMed  Google Scholar 

  • Buffalari DM, Grace AA. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of alpha-2 and beta receptor activation. J Neurosci. 2007;27(45):12358–66.

    Article  PubMed  Google Scholar 

  • Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 12 newgeneration antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373:746–58.

    Article  PubMed  Google Scholar 

  • Connor DF, Grasso DJ, Slivinsky MD, et al. An open-label study of guanfacine extended release for traumatic stress related symptoms in children and adolescents. J Child Adolesc Psychopharmacol. 2013;23(4):244–51.

    Article  PubMed Central  PubMed  Google Scholar 

  • Coull JT. Pharmacological manipulations of the alpha 2-noradrenergic system. Effects on cognition. Drugs Aging. 1994;5(2):116–26.

    Article  PubMed  Google Scholar 

  • Dahlström A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia. 1964;20(7):398–9.

    Article  PubMed  Google Scholar 

  • de Quervain DJ, Kolassa IT, Ertl V, et al. A deletion variant of the alpha2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nat Neurosci. 2007;10(9):1137–9.

    Article  PubMed  Google Scholar 

  • Debiec J, Ledoux JE. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience. 2004;129(2):267–72.

    Article  PubMed  Google Scholar 

  • Eaton K, Sallee FR, Sah R. Relevance of neuropeptide Y (NPY) in psychiatry. Curr Top Med Chem. 2007;7:1645–59.

    Article  PubMed  Google Scholar 

  • Farb CR, Chang W, Ledoux JE. Ultrastructural characterization of noradrenergic axons and Beta-adrenergic receptors in the lateral nucleus of the amygdala. Front Behav Neurosci. 2010;4:162.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fort P, Khateb A, Pegna A, et al. Noradrenergic modulation of cholinergic nucleus basalis neurons demonstrated by in vitro pharmacological and immunohistochemical evidence in the guinea-pig brain. Eur J Neurosci. 1995;7(7):1502–11.

    Article  PubMed  Google Scholar 

  • Franowicz JS, Kessler LE, Borja CM, et al. Mutation of the alpha2A adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci. 2002;22:8771–7.

    PubMed  Google Scholar 

  • Germain A, Richardson R, Moul DE, et al. Placebo-controlled comparison of prazosin and cognitive-behavioral treatments for sleep disturbances in US Military Veterans. J Psychosom Res. 2012;72(2):89–96.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gray JA. The neuropsychology of anxiety. Br J Psychol. 1978;69:417–34.

    Article  PubMed  Google Scholar 

  • Hahn MK, Blakely RD. Monoamine transporter gene structure and polymorphisms in relation to psychiatric and other complex disorders. Pharmacogenomics J. 2002;2(4):217–35.

    Article  PubMed  Google Scholar 

  • Hatfield T, Spanis C, McGaugh JL. Response of amygdalar norepinephrine to footshock and GABAergic drugs using in vivo microdialysis and HPLC. Brain Res. 1999;835(2):340–5.

    Article  PubMed  Google Scholar 

  • Hornykiewicz O. Brain catecholamines in schizophrenia – a good case for noradrenaline. Nature. 1982;299(5883):484–6.

    Article  PubMed  Google Scholar 

  • Hurlemann R, Walter H, Rehme AK, et al. Human amygdala reactivity is diminished by the β-noradrenergic antagonist propranolol. Psychol Med. 2010;40(11):1839–48.

    Article  PubMed  Google Scholar 

  • Johnson KG, Rosen J. Re-emergence of posttraumatic stress disorder nightmares with nursing home admission: treatment with prazosin. J Am Med Dir Assoc. 2013;14(2):130–1.

    Article  PubMed  Google Scholar 

  • Kolassa IT, Kolassa S, Ertl V, et al. The risk of posttraumatic stress disorder after trauma depends on traumatic load and the catechol-O-methyltransferase Val(158)Met polymorphism. Biol Psychiatry. 2010;67(4):304–8.

    Article  PubMed  Google Scholar 

  • Koren D, Hemel D, Klein E. Injury increases the risk for PTSD: an examination of potential neurobiological and psychological mediators. CNS Spectrum. 2006;11(8):616–24.

    Google Scholar 

  • Laitman BM, Gajewski ND, Mann GL, et al. The α1 adrenoceptor antagonist prazosin enhances sleep continuity in fear-conditioned Wistar-Kyoto rats. Prog Neuropsychopharmacol Biol Psychiatry. 2014;49:7–15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lappalainen J, Kranzler HR, Malison R, et al. A functional neuropeptide Y Leu7Pro polymorphism associated with alcohol dependence in a large population sample from the United States. Arch Gen Psychiatry. 2002;59(9):825–31.

    Article  PubMed  Google Scholar 

  • Manns ID, Lee MG, Modirrousta M, et al. Alpha 2 adrenergic receptors on GABAergic, putative sleep-promoting basal forebrain neurons. Eur J Neurosci. 2003;18(3):723–7.

    Article  PubMed  Google Scholar 

  • McGaugh JL, McIntyre CK, Power AE. Amygdala modulation of memory consolidation: interaction with other brain systems. Neurobiol Learn Mem. 2002;78(3):539–52.

    Article  PubMed  Google Scholar 

  • Mueller D, Porter JT, Quirk GJ. Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci. 2008;28(2):369–75.

    Article  PubMed  Google Scholar 

  • Neylan TC, Lenoci M, Samuelson KW, et al. No improvement of posttraumatic stress disorder symptoms with guanfacine treatment. Am J Psychiatry. 2006;163:2186–8.

    Article  PubMed  Google Scholar 

  • Petrakis IL, Ralevski E, Desai N, et al. Noradrenergic vs serotonergic antidepressant with or without naltrexone for veterans with PTSD and comorbid alcohol dependence. Neuropsychopharmacology. 2012;37(4):996–1004.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pietrzak RH, Gallezot JD, Ding YS, et al. Association of posttraumatic stress disorder with reduced in vivo norepinephrine transporter availability in the locus coeruleus. JAMA Psychiatry. 2013;70(11):1199–205.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasch B, Spalek K, Buholzer S, et al. A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proc Natl Acad Sci U S A. 2009;106(45):19191–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Raskind MA, Peskind ER, Hoff DJ, et al. A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol Psychiatry. 2007;61(8):928–34.

    Article  PubMed  Google Scholar 

  • Raskind MA, Peterson K, Williams T, et al. A trial of prazosin for combat trauma PTSD with nightmares in active-duty soldiers returned from Iraq and Afghanistan. Am J Psychiatry. 2013;170(9):1003–10.

    Article  PubMed  Google Scholar 

  • Rasmusson AM, Hauger RL, Morgan CA, et al. Low baseline and yohimbine-stimulated plasma neuropeptide Y (NPY) levels in combat-related PTSD. Biol Psychiatry. 2000;47:526–39.

    Article  PubMed  Google Scholar 

  • Rosenkranz JA, Buffalari DM, Grace AA. Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala. Biol Psychiatry. 2006;59(9):801–11.

    Article  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. Adrenergic alpha2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci. 1998;18(8):3035–42.

    PubMed  Google Scholar 

  • Sautter FJ, Bissette G, Wiley J, et al. Corticotropin-releasing factor in posttraumatic stress disorder (PTSD) with secondary psychotic symptoms, nonpsychotic PTSD, and healthy control subjects. Biol Psychiatry. 2003;54(12):1382–8.

    Article  PubMed  Google Scholar 

  • Schoenfeld FB, Marmar CR, Neylan TC. Current concepts in pharmacotherapy for posttraumatic stress disorder. Psychiatr Serv. 2004;55:519–31.

    Article  PubMed  Google Scholar 

  • Shalev AY, Sahar T, Freedman S, et al. A prospective study of heart rate response following trauma and the subsequent development of posttraumatic stress disorder. Arch Gen Psychiatry. 1998;55:553–9.

    Article  PubMed  Google Scholar 

  • Shekhar A, Sajdyk TS, Keim SR, et al. Role of the basolateral amygdala in panic disorder. Ann N Y Acad Sci. 1999;877:747–50.

    Article  PubMed  Google Scholar 

  • Sherin JE, Nemeroff CB. Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci. 2011;13(3):263–78.

    PubMed Central  PubMed  Google Scholar 

  • Sofuoğlu M, Rosenheck R, Petrakis I. Pharmacological treatment of comorbid PTSD and substance use disorder: recent progress. Addict Behav. 2014;39:428–33.

    Article  PubMed  Google Scholar 

  • Sutherland SM, Davidson JR. Pharmacotherapy for post-traumatic stress disorder. Psychiatr Clin North Am. 1994;17(2):409–23.

    PubMed  Google Scholar 

  • Szabadi E. Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol. 2013;27(8):659–93.

    Article  PubMed  Google Scholar 

  • Taylor FB, Lowe K, Thompson C, et al. Daytime prazosin reduces psychological distress to trauma specific cues in civilian trauma posttraumatic stress disorder. Biol Psychiatry. 2006;59(7):577–81.

    Article  PubMed  Google Scholar 

  • Taylor FB, Martin P, Thompson C, et al. Prazosin effects on objective sleepmeasures and clinical symptoms in civilian trauma posttraumatic stress disorder: a placebo-controlled study. Biol Psychiatry. 2008;63(6):629–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Terzioğlu B, Kaleli M, Aydın B, et al. Increased noradrenaline levels in the rostral pons can be reversed by M1 antagonist in a rat model of post-traumatic stress disorder. Neurochem Res. 2013;38(8):1726–33.

    Article  PubMed  Google Scholar 

  • Van Bockstaele EJ, Bajic D, Proudfit H, et al. Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav. 2001;73(3):273–83.

    Article  PubMed  Google Scholar 

  • Wangelin BC, Powers MB, Smits JA, et al. Enhancing exposure therapy for PTSD with yohimbine HCL: protocol for a double-blind, randomized controlled study implementing subjective and objective measures of treatment outcome. Contemp Clin Trials. 2013;36(2):319–26.

    Article  PubMed  Google Scholar 

  • Westfall TC, Westfall DP. Adrnergic agonists and antagonists. In: Brunton LL, editor. Goodman & Gillman’s the pharmacological basis of the therapeutics. 12th ed. New York: McGraw-Hill; 2011. p. 227–334.

    Google Scholar 

  • Wilson CB, Ebenezer PJ, McLaughlin LD, et al. Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One. 2014;9(2), e89104.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yehuda R, McFarlane AC, Shalev AY. Predicting the development of posttraumatic stress disorder from the acute response to a traumatic event. Biol Psychiatry. 1998;44(12):1305–13.

    Article  PubMed  Google Scholar 

  • Yehuda R, Halligan SL, Grossman R, et al. The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder. Biol Psychiatry. 2002;52(5):393–403.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zafer Gören .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Gören, M.Z., Cabadak, H. (2015). Noradrenaline and Post-traumatic Stress Disorder. In: Martin, C., Preedy, V., Patel, V. (eds) Comprehensive Guide to Post-Traumatic Stress Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-08613-2_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08613-2_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-08613-2

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics