Skip to main content

Resistance to Proteasome Inhibitors in Multiple Myeloma

  • Chapter
  • First Online:
Resistance to Proteasome Inhibitors in Cancer

Abstract

Multiple myeloma (MM) is a clonal proliferation of malignant plasma cells in the bone marrow associated with a spectrum of clinical symptoms including bone destruction, anemia, hypercalcemia, and renal failure. Although MM remains incurable, a dramatic paradigm shift in the treatment of MM has occurred over the past decade through the introduction of novel agents, including the development of small molecule inhibitors targeting the proteasome. Among the proteasome inhibitors (PIs), bortezomib (BTZ) and carfilzomib (CFZ) have been approved by the FDA for treatment of relapsed/refractory MM in 2003 and 2012, respectively. Recently, other PIs, such as ixazomib (MLN-9708), oprozomib (ONX0912), and marizomib (NPI-0052), have been under evaluation in preclinical and clinical studies. Indeed, it is now well known that malignant plasma cells are exquisitely sensitive to proteasome inhibitors due to protein overload and ER stress. Unfortunately, relapse of myeloma develops due to acquisition of resistance to proteasome inhibitors. Specifically, mutations in overexpression of proteins belonging to the proteasome complex, upregulation of transporter channels or cytochrome components, induction of alternative compensative mechanisms such as the aggresome pathway, and modulation of downstream pathways have been all reported as possible mechanisms of proteasome inhibitor resistance. In this chapter, we will first briefly describe the structure and function of the proteasome in normal and malignant plasma cells, and then define the major mechanisms of resistance to proteasome inhibition, and clinical approaches to overcoming these pathways in the context of both clinical application of PIs and rational combinations of them with other agents in the treatment of MM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BTZ:

Bortezomib

CFZ:

Carfilzomib

C-L:

Caspase-like

CT-L:

Chymotrypsin-like

CR:

Complete response

HDAC:

Histone deacetylase

HDACIs:

HDAC inhibitors

Ig:

Immunoglobulin

MM:

Multiple myeloma

MTD:

Maximum-tolerated dose

OS:

Overall survival

PI:

Proteasome inhibitor

T-L:

Trypsin-like

TTP:

Time to progression

References

  1. Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5(3):230–242

    Article  PubMed  CAS  Google Scholar 

  2. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899

    Article  PubMed  CAS  Google Scholar 

  3. Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43:835–869

    Article  PubMed  CAS  Google Scholar 

  4. Goldberg AL, St John AC (1976) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 45:747–803

    Article  PubMed  CAS  Google Scholar 

  5. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  6. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, Scheffer GL, Debipersad K, Vojtekova K, Lemos C, van der Heijden JW, Ylstra B, Peters GJ, Kaspers GL, Dijkmans BA, Scheper RJ, Jansen G (2008) Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112(6):2489–2499

    Article  PubMed  CAS  Google Scholar 

  7. Lü S, Yang J, Song X, Gong S, Zhou H, Guo L, Song N, Bao X, Chen P, Wang J (2008) Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther 326(2):423–431

    Article  PubMed  Google Scholar 

  8. Lü S, Chen Z, Yang J, Chen L, Gong S, Zhou H, Guo L, Wang J (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36(10):1278–1284

    Article  PubMed  Google Scholar 

  9. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, Inagaki A, Kusumoto S, Ishida T, Komatsu H, Shiotsu Y, Ueda R (2010) Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia 24(8):1506–1512

    Article  PubMed  CAS  Google Scholar 

  10. Balsas P, Galán-Malo P, Marzo I, Naval J (2012) Bortezomib resistance in a myeloma cell line is associated to PSMbeta5 overexpression and polyploidy. Leuk Res 36(2):212–218

    Article  PubMed  CAS  Google Scholar 

  11. Franke NE, Niewerth D, Assaraf YG, van Meerloo J, Vojtekova K, van Zantwijk CH, Zweegman S, Chan ET, Kirk CJ, Geerke DP, Schimmer AD, Kaspers GJ, Jansen G, Cloos J (2012) Impaired bortezomib binding to mutant beta5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26(4):757–768

    Article  PubMed  CAS  Google Scholar 

  12. Groll M, Berkers CR, Ploegh HL, Ovaa H (2006) Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14(3): 451–456

    Article  PubMed  CAS  Google Scholar 

  13. Borissenko L, Groll M (2007) 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107(3):687–717

    Article  PubMed  CAS  Google Scholar 

  14. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272(40):25200–25209

    Article  PubMed  CAS  Google Scholar 

  15. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Lichter DI, Danaee H, Pickard MD, Tayber O, Sintchak M, Shi H, Richardson PG, Cavenagh J, Bladé J, Façon T, Niesvizky R, Alsina M, Dalton W, Sonneveld P, Lonial S, van de Velde H, Ricci D, Esseltine DL, Trepicchio WL, Mulligan G, Anderson KC (2012) Sequence analysis of beta-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood 120(23):4513–4516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Wang L, Kumar S, Fridley BL, Kalari KR, Moon I, Pelleymounter LL, Hildebrandt MA, Batzler A, Eckloff BW, Wieben ED, Greipp PR (2008) Proteasome beta subunit pharmacogenomics: gene resequencing and functional genomics. Clin Cancer Res 14(11):3503–3513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Shuqing L, Jianmin Y, Chongmei H, Hui C, Wang J (2011) Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol 39(12):1117–1118

    Article  PubMed  Google Scholar 

  19. Politou M, Karadimitris A, Terpos E, Kotsianidis I, Apperley JF, Rahemtulla A (2006) No evidence of mutations of the PSMB5 (beta-5 subunit of proteasome) in a case of myeloma with clinical resistance to Bortezomib. Leuk Res 30(2):240–241

    Article  PubMed  CAS  Google Scholar 

  20. Li B, Wang H, Orlowski RZ (2013) Proteasome maturation protein (pomp) is associated with proteasome inhibitor resistance in myeloma, and its suppression enhances the activity of bortezomib and carfilzomib. Annual Meeting of American Society of Hematology 2013. Blood 122:280

    Google Scholar 

  21. Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738

    Article  PubMed  CAS  Google Scholar 

  23. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, Anderson KC (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 102(24):8567–8572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P, Tassone P, Atadja P, Chauhan D, Munshi NC, Anderson KC (2006) Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108(10):3441–3449

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Shringarpure R, Catley L, Bhole D, Burger R, Podar K, Tai YT, Kessler B, Galardy P, Ploegh H, Tassone P, Hideshima T, Mitsiades C, Munshi NC, Chauhan D, Anderson KC (2006) Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol 134(2):145–156

    Article  PubMed  CAS  Google Scholar 

  26. Chauhan D, Li G, Shringarpure R, Podar K, Ohtake Y, Hideshima T, Anderson KC (2003) Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63(19):6174–6177

    PubMed  CAS  Google Scholar 

  27. Ito H, Iwamoto I, Inaguma Y, Takizawa T, Nagata K, Asano T, Kato K (2005) Endoplasmic reticulum stress induces the phosphorylation of small heat shock protein, Hsp27. J Cell Biochem 95(5):932–941

    Article  PubMed  CAS  Google Scholar 

  28. Kumano M, Furukawa J, Shiota M, Zardan A, Zhang F, Beraldi E, Wiedmann RM, Fazli L, Zoubeidi A, Gleave ME (2012) Cotargeting stress-activated Hsp27 and autophagy as a combinatorial strategy to amplify endoplasmic reticular stress in prostate cancer. Mol Cancer Ther 11(8):1661–1671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Cea M, Cagnetta A, Fulciniti M, Tai YT, Hideshima T, Chauhan D, Roccaro A, Sacco A, Calimeri T, Cottini F, Jakubikova J, Kong SY, Patrone F, Nencioni A, Gobbi M, Richardson P, Munshi N, Anderson KC (2012) Targeting NAD+ salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition. Blood 120(17):3519–3529

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Cagnetta A, Cea M, Calimeri T, Acharya C, Fulciniti M, Tai YT, Hideshima T, Chauhan D, Zhong MY, Patrone F, Nencioni A, Gobbi M, Richardson P, Munshi N, Anderson KC (2013) Intracellular NAD(+) depletion enhances bortezomib-induced anti-myeloma activity. Blood 122(7):1243–1255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Iland H, Horvath N, Ho PJ, Harrison S, Fleming S, Joshua DE, Allen JD (2012) Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 97(1):64–72

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE, Chung KC, Tiedemann RE (2013) Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24(3):289–304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Stessman HA, Mansoor A, Zhan F, Linden MA, Van Ness B, Baughn LB (2013) Bortezomib resistance can be reversed by induced expression of plasma cell maturation markers in a mouse in vitro model of multiple myeloma. PLoS One 8(10):e77608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Rumpold H, Salvador C, Wolf AM, Tilg H, Gastl G, Wolf D (2007) Knockdown of PgP resensitizes leukemic cells to proteasome inhibitors. Biochem Biophys Res Commun 361(2): 549–554

    Article  PubMed  CAS  Google Scholar 

  35. Verbrugge SE, Assaraf YG, Dijkmans BA, Scheffer GL, Al M, den Uyl D, Oerlemans R, Chan ET, Kirk CJ, Peters GJ, van der Heijden JW, de Gruijl TD, Scheper RJ, Jansen G (2012) Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with rheumatoid arthritis. J Pharmacol Exp Ther 341(1):174–182

    Article  PubMed  CAS  Google Scholar 

  36. Xu D, Hu J, De Bruyne E, Menu E, Schots R, Vanderkerken K, Van Valckenborgh E (2012) Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple myeloma. Biochem Biophys Res Commun 428(4):518–524

    Article  PubMed  CAS  Google Scholar 

  37. Shumway SD, Miyamoto S (2004) A mechanistic insight into a proteasome-independent constitutive inhibitor kappaBalpha (IkappaBalpha) degradation and nuclear factor kappaB (NF-kappaB) activation pathway in WEHI-231 B-cells. Biochem J 380(Pt 1):173–180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K, Mitsiades C, Munshi NC, Richardson PG, Carrasco RD, Anderson KC (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114(5):1046–1052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Markovina S, Callander NS, O’Connor SL, Kim J, Werndli JE, Raschko M, Leith CP, Kahl BS, Kim K, Miyamoto S (2008) Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 6(8):1356–1364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Yang DT, Young KH, Kahl BS, Markovina S, Miyamoto S (2008) Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer 7:40

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou L, Hou J, Fu W, Wang D, Yuan Z, Jiang H (2008) Arsenic trioxide and 2-methoxyestradiol reduce beta-catenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to Bortezomib. Leuk Res 32(11):1674–1683

    Article  PubMed  CAS  Google Scholar 

  42. Kuhn DJ, Berkova Z, Jones RJ, Woessner R, Bjorklund CC, Ma W, Davis RE, Lin P, Wang H, Madden TL, Wei C, Baladandayuthapani V, Wang M, Thomas SK, Shah JJ, Weber DM, Orlowski RZ (2012) Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood 120(16):3260–3270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Que W, Chen J, Chuang M, Jiang D (2012) Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS 120(3):195–203

    Article  PubMed  CAS  Google Scholar 

  44. Ye S, Qiang W, Chen Y, Hu B, Zhang Q, Yaccoby S, van Rhee F, Barlogie B, Epstein J, Qiang YW (2013) MAF protein elicits innate resistance to bortezomib in multiple myeloma. Annual Meeting of American Society of Hematology 2013. Blood 122:281

    Google Scholar 

  45. Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278(36):33714–33723

    Article  PubMed  CAS  Google Scholar 

  46. Pei XY, Dai Y, Grant S (2003) The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17(10):2036–2045

    Article  PubMed  CAS  Google Scholar 

  47. Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10(11):3839–3852

    Article  PubMed  CAS  Google Scholar 

  48. Yu C, Rahmani M, Dent P, Grant S (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295(2):555–566

    Article  PubMed  CAS  Google Scholar 

  49. Zou W, Yue P, Lin N, He M, Zhou Z, Lonial S, Khuri FR, Wang B, Sun SY (2006) Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res 12(1): 273–280

    Article  PubMed  CAS  Google Scholar 

  50. Perrone G, Hideshima T, Ikeda H, Okawa Y, Calabrese E, Gorgun G, Santo L, Cirstea D, Raje N, Chauhan D, Baccarani M, Cavo M, Anderson KC (2009) Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia 23(9):1679–1686

    Article  PubMed  CAS  Google Scholar 

  51. Liu FT, Agrawal SG, Movasaghi Z, Wyatt PB, Rehman IU, Gribben JG, Newland AC, Jia L (2008) Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib. Blood 112(9):3835–3846

    Article  PubMed  CAS  Google Scholar 

  52. Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, Petasis NA, Chen TC, Schönthal AH (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113(23):5927–5937

    Article  PubMed  CAS  Google Scholar 

  53. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455(7214):813–817

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Cummins JM, Rago C, Kohli M, Kinzler KW, Lengauer C, Vogelstein B (2004) Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428(6982):1 p following 486

    Article  PubMed  Google Scholar 

  55. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258(13): 8206–8214

    PubMed  CAS  Google Scholar 

  56. Ooi MG, Hayden PJ, Kotoula V, McMillin DW, Charalambous E, Daskalaki E, Raje NS, Munshi NC, Chauhan D, Hideshima T, Buon L, Clynes M, O’Gorman P, Richardson PG, Mitsiades CS, Anderson KC, Mitsiades N (2009) Interactions of the Hdm2/p53 and proteasome pathways may enhance the antitumor activity of bortezomib. Clin Cancer Res 15(23): 7153–7160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Xu GW, Ali M, Wood TE, Wong D, Maclean N, Wang X, Gronda M, Skrtic M, Li X, Hurren R, Mao X, Venkatesan M, Beheshti Zavareh R, Ketela T, Reed JC, Rose D, Moffat J, Batey RA, Dhe-Paganon S, Schimmer AD (2010) The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115(11):2251–2259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Song IS, Kim HK, Lee SR, Jeong SH, Kim N, Ko KS, Rhee BD, Han J (2013) Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells. Int J Cancer 133(6):1357–1367

    Article  PubMed  CAS  Google Scholar 

  59. Song IS, Jeong YJ, Jeong SH, Heo HJ, Kim HK, Lee SR, Ko TH, Youm JB, Kim N, Ko KS, Rhee BD, Han J (2013) Combination treatment with 2-methoxyestradiol overcomes bortezomib resistance of multiple myeloma cells. Exp Mol Med 45:e50

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R, Munshi N, Richardson P, Cotter FE, Anderson KC (2004) Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 104(8):2458–2466

    Article  PubMed  CAS  Google Scholar 

  61. Campanella A, Santambrogio P, Fontana F, Frenquelli M, Cenci S, Marcatti M, Sitia R, Tonon G, Camaschella C (2013) Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica 98(6):971–979

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. De Domenico I, Vaughn MB, Li L, Bagley D, Musci G, Ward DM, Kaplan J (2006) Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J 25(22):5396–5404

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414

    Article  PubMed  CAS  Google Scholar 

  64. Wang J, Fillebeen C, Chen G, Biederbick A, Lill R, Pantopoulos K (2007) Iron-dependent degradation of apo-IRP1 by the ubiquitin-proteasome pathway. Mol Cell Biol 27(7):2423–2430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Sonneveld P, Goldschmidt H, Rosinol L, Blade J, Lahuerta JJ, Cavo M, Tacchetti P, Zamagni E, Attal M, Lokhorst HM, Desai A, Cakana A, Liu K, van de Velde H, Esseltine DL, Moreau P (2013) Bortezomib-based versus nonbortezomib-based induction treatment before autologous stem-cell transplantation in patients with previously untreated multiple myeloma: a meta-analysis of phase III randomized, controlled trials. J Clin Oncol 31(26):3279–3287

    Article  PubMed  CAS  Google Scholar 

  66. Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J, Haessler J, Feather J, Hoering A, Moreau P, LeLeu X, Hulin C, Klein SK, Sonneveld P, Siegel D, Blade J, Goldschmidt H, Jagannath S, Miguel JS, Orlowski R, Palumbo A, Sezer O, Rajkumar SV, Durie BG (2012) Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia 26(1):149–157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, Trudel S, Kukreti V, Bahlis N, Alsina M, Chanan-Khan A, Buadi F, Reu FJ, Somlo G, Zonder J, Song K, Stewart AK, Stadtmauer E, Kunkel L, Wear S, Wong AF, Orlowski RZ, Jagannath S (2012) A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 120(14):2817–2825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A 99(22):14374–14379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2617

    Article  PubMed  CAS  Google Scholar 

  70. Mateos MV, Hernández JM, Hernández MT, Gutiérrez NC, Palomera L, Fuertes M, Díaz-Mediavilla J, Lahuerta JJ, de la Rubia J, Terol MJ, Sureda A, Bargay J, Ribas P, de Arriba F, Alegre A, Oriol A, Carrera D, García-Laraña J, García-Sanz R, Bladé J, Prósper F, Mateo G, Esseltine DL, van de Velde H, San Miguel JF (2006) Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 108(7):2165–2172

    Article  PubMed  CAS  Google Scholar 

  71. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS, Dmoszynska A, Abdulkadyrov KM, Schots R, Jiang B, Mateos MV, Anderson KC, Esseltine DL, Liu K, Cakana A, van de Velde H, Richardson PG (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359(9):906–917

    Article  PubMed  CAS  Google Scholar 

  72. Mateos MV, Oriol A, Martinez-Lopez J, Gutierrez N, Teruel AI, de Paz R, Garcia-Larana J, Bengoechea E, Martin A, Mediavilla JD, Palomera L, de Arriba F, Gonzalez Y, Hernandez JM, Sureda A, Bello JL, Bargay J, Penalver FJ, Ribera JM, Martin-Mateos ML, Garcia-Sanz R, Cibeira MT, Ramos ML, Vidriales MB, Paiva B, Montalban MA, Lahuerta JJ, Blade J, Miguel JF (2010) Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol 11(10):934–941

    Article  PubMed  CAS  Google Scholar 

  73. Richardson PG, Weller E, Jagannath S, Avigan DE, Alsina M, Schlossman RL, Mazumder A, Munshi NC, Ghobrial IM, Doss D, Warren DL, Lunde LE, McKenney M, Delaney C, Mitsiades CS, Hideshima T, Dalton W, Knight R, Esseltine DL, Anderson KC (2009) Multicenter, phase I, dose-escalation trial of lenalidomide plus bortezomib for relapsed and relapsed/refractory multiple myeloma. J Clin Oncol 27(34):5713–5719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Richardson PG, Weller E, Lonial S, Jakubowiak AJ, Jagannath S, Raje NS, Avigan DE, Xie W, Ghobrial IM, Schlossman RL, Mazumder A, Munshi NC, Vesole DH, Joyce R, Kaufman JL, Doss D, Warren DL, Lunde LE, Kaster S, Delaney C, Hideshima T, Mitsiades CS, Knight R, Esseltine DL, Anderson KC (2010) Lenalidomide, bortezomib, and dexamethasone combination therapy in patients with newly diagnosed multiple myeloma. Blood 116(5):679–686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Nooka AK, Kaufman JL, Muppidi S, Langston A, Heffner LT, Gleason C, Casbourne D, Saxe D, Boise LH, Lonial S (2014) Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients. Leukemia 28(3):690–693

    Article  PubMed  CAS  Google Scholar 

  76. Kumar S, Flinn I, Richardson PG, Hari P, Callander N, Noga SJ, Stewart AK, Turturro F, Rifkin R, Wolf J, Estevam J, Mulligan G, Shi H, Webb IJ, Rajkumar SV (2012) Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 119(19):4375–4382

    Article  PubMed  CAS  Google Scholar 

  77. Wang M, Martin T, Bensinger W, Alsina M, Siegel DS, Kavalerchik E, Huang M, Orlowski RZ, Niesvizky R (2013) Phase 2 dose-expansion study (PX-171-006) of carfilzomib, lenalidomide, and low-dose dexamethasone in relapsed or progressive multiple myeloma. Blood 122(18):3122–3128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Kumar SK, Roy V, Reeder C, LaPlant BR, Lacy MQ, Gertz MA, Laumann K, Thompson MA, Witzig TE, Buadi FK, Rivera CE, Mikhael JR, Bergsagel PL, Hwa L, Rajkumar V, Dispenzieri A (2013) Phase 2 trial of single agent MLN9708 in patients with relapsed multiple myeloma not refractory to bortezomib. Annual Meeting of American Society of Hematology 2013. Blood 122(21):1944

    Google Scholar 

  79. Richardson PG, Hofmeister CC, Siegel D, Lonial S, Laubach JP, Efebera YA, Vesole DH, Nooka AK, Rosenblatt J, Raje N, Zaki MH, Hua Y, Li Y, Shah S, Wang J, Anderson KC (2013) MM-005: a phase 1 trial of pomalidomide, bortezomib, and low-dose dexamethasone (PVD) in relapsed and/or refractory multiple myeloma (RRMM). Annual Meeting of American Society of Hematology 2013. Blood 122(21):1969a

    Google Scholar 

  80. Shah JJ, Stadtmauer EA, Abonour R, Cohen AD, Bensinger W, Gasparetto C, Kaufman JL, Lentzsch S, Vogl DT, Orlowski RL, Kim L, Bialas N, Smith DD, Durie BGM (2013) Phase I/II dose expansion of a multi-center trial of carfilzomib and pomalidomide with dexamethasone (Car-Pom-d) in patients with relapsed/refractory multiple myeloma. Annual Meeting of American Society of Hematology 2013. Blood 122(21):690a

    Google Scholar 

  81. Richardson PG, Schlossman RL, Alsina M, Weber DM, Coutre SE, Gasparetto C, Mukhopadhyay S, Ondovik MS, Khan M, Paley CS, Lonial S (2013) PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood 122(14):2331–2337

    Article  PubMed  CAS  Google Scholar 

  82. Richardson PG, Schlossman RL, Alsina M, Weber DM, Coutre SE, Gasparetto C, Mukhopadhyay S, Ondovik MS, Khan M, Paley CS, Lonial S (2013) Time to event analyses in PANORAMA 2: a phase 2 study of panobinostat, bortezomib, and dexamethasone in patients with relapsed and bortezomib-refractory multiple myeloma. Annual Meeting of American Society of Hematology 2013. Blood 122(21):1970

    Google Scholar 

  83. Dimopoulos M, Siegel DS, Lonial S, Qi J, Hajek R, Facon T, Rosinol L, Williams C, Blacklock H, Goldschmidt H, Hungria V, Spencer A, Palumbo A, Graef T, Eid JE, Houp J, Sun L, Vuocolo S, Anderson KC (2013) Vorinostat or placebo in combination with bortezomib in patients with multiple myeloma (VANTAGE 088): a multicentre, randomised, double-blind study. Lancet Oncol 14(11):1129–1140

    Article  PubMed  CAS  Google Scholar 

  84. Harrison SJ, Quach H, Link E, Seymour JF, Ritchie DS, Ruell S, Dean J, Januszewicz H, Johnstone R, Neeson P, Dickinson M, Nichols J, Prince HM (2011) A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood 118(24):6274–6283

    Article  PubMed  CAS  Google Scholar 

  85. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC, Cirstea D, Rodig S, Eda H, Scullen T, Canavese M, Bradner J, Anderson KC, Jones SS, Raje N (2012) Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119(11):2579–2589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Raje N, Vogl DT, Hari PN, Jagannath S, Jones SS, Supko JG, Leone G, Wheeler C, Orlowski RZ, Richardson PG, Lonial S (2013) ACY-1215, a selective histone deacetylase (HDAC) 6 inhibitor: interim results of combination therapy with bortezomib in patients with multiple myeloma (MM). Annual Meeting of American Society of Hematology 2013. Blood 122(21):759a

    Google Scholar 

  87. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Ghobrial IM, Shain K, Hanlon C, Banwait R, Azab AK, Laubach JP, Armand P, Munshi NC, Schlossman RL, Chuma S, Boswell EN, Mostyn P, Houry L, Anderson KC, Richardson PG (2013) Phase I/II trial of plerixafor and bortezomib as a chemosensitization strategy in relapsed or relapsed/refractory multiple myeloma. Annual Meeting of American Society of Hematology 2013. Blood 122(21):1947a

    Google Scholar 

  89. Hideshima T, Catley L, Raje N, Chauhan D, Podar K, Mitsiades C, Tai YT, Vallet S, Kiziltepe T, Ocio E, Ikeda H, Okawa Y, Hideshima H, Munshi NC, Yasui H, Richardson PG, Anderson KC (2007) Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol 138(6):783–791

    Article  PubMed  CAS  Google Scholar 

  90. Richardson PG, Wolf J, Jakubowiak A, Zonder J, Lonial S, Irwin D, Densmore J, Krishnan A, Raje N, Bar M, Martin T, Schlossman R, Ghobrial IM, Munshi N, Laubach J, Allerton J, Hideshima T, Colson K, Poradosu E, Gardner L, Sportelli P, Anderson KC (2011) Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol 29(32):4243–4249

    Article  PubMed  CAS  Google Scholar 

  91. Richardson PG, Nagler A, Ben-Yehuda D, Badros A, Hari P, Hajek R, Spicka I, Kaya H, Le Blanc R, Yoon S, Kim K, Martinez-Lopez J, Mittelman M, Shpilberg O, Tothova E, Laubach JP, Ghobrial IM, Leiba M, Gatt ME, Sportelli P, Chen M, Anderson KC (2013) Randomized placebo-controlled phase III study of perifosine combined with bortezomib and dexamethasone in relapsed, refractory multiple myeloma patients previously treated with bortezomib Annual Meeting of American Society of Hematology 2013. Blood 122(21):3189

    Google Scholar 

  92. van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, Garg TK, Shi J, Moreno-Bost AM, Yun R, Balasa B, Ganguly B, Chao D, Rice AG, Zhan F, Shaughnessy JD Jr, Barlogie B, Yaccoby S, Afar DE (2009) Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther 8(9):2616–2624

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jakubowiak AJ, Benson DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A, Richardson PG, Afar DE, Singhal AK, Anderson KC (2012) Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol 30(16):1960–1965

    Article  PubMed  CAS  Google Scholar 

  94. Orlowski RZ, Nagler A, Sonneveld P, Blade J, Hajek R, Spencer A, San Miguel J, Robak T, Dmoszynska A, Horvath N, Spicka I, Sutherland HJ, Suvorov AN, Zhuang SH, Parekh T, Xiu L, Yuan Z, Rackoff W, Harousseau JL (2007) Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 25(25):3892–3901

    Article  PubMed  CAS  Google Scholar 

  95. Richardson PG, Xie W, Mitsiades C, Chanan-Khan AA, Lonial S, Hassoun H, Avigan DE, Oaklander AL, Kuter DJ, Wen PY, Kesari S, Briemberg HR, Schlossman RL, Munshi NC, Heffner LT, Doss D, Esseltine DL, Weller E, Anderson KC, Amato AA (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27(21):3518–3525

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Richardson PG, Chanan-Khan AA, Lonial S, Krishnan AY, Carroll MP, Alsina M, Albitar M, Berman D, Messina M, Anderson KC (2011) Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol 153(6):729–740

    Article  PubMed  CAS  Google Scholar 

  97. Lonial S, Mitsiades CS, Richardson PG (2011) Treatment options for relapsed and refractory multiple myeloma. Clin Cancer Res 17(6):1264–1277

    Article  PubMed  Google Scholar 

  98. Laubach JP, Voorhees PM, Hassoun H, Jakubowiak A, Lonial S, Richardson PG (2014) Current strategies for treatment of relapsed/refractory multiple myeloma. Expert Rev Hematol 7(1):97–111

    Article  PubMed  CAS  Google Scholar 

  99. Ocio EM, Mitsiades CS, Orlowski RZ, Anderson KC (2014) Future agents and treatment directions in multiple myeloma. Expert Rev Hematol 7(1):127–141

    Article  PubMed  CAS  Google Scholar 

  100. Kyle RA, Rajkumar SV (2014) An overview of the progress in the treatment of multiple myeloma. Expert Rev Hematol 7(1):5–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Richardson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cottini, F. et al. (2014). Resistance to Proteasome Inhibitors in Multiple Myeloma. In: Dou, Q. (eds) Resistance to Proteasome Inhibitors in Cancer. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-06752-0_2

Download citation

Publish with us

Policies and ethics