Skip to main content

On the Hopf Conjecture with Symmetry

  • Chapter
  • First Online:
Geometry of Manifolds with Non-negative Sectional Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2110))

Abstract

The Hopf conjecture states that an even-dimensional manifold with positive curvature has positive Euler characteristic. We show that this is true under the assumption that a torus of sufficiently large dimension acts by isometries. This improves previous results by replacing linear bounds by a logarithmic bound. The new method that is introduced is the use of Steenrod squares combined with geometric arguments of a similar type to what was done before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Adem, The iteration of the Steenrod squares in algebraic topology. Proc. Natl. Acad. Sci. USA 38, 720–726 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Berger, Riemannian Geometry During the Second Half of the Twentieth Century. University Lecture Series, vol. 17 (American Mathematical Society, Providence, 1998)

    Google Scholar 

  3. R.L. Bishop, S.I. Goldberg, Some implications of the generalized gauss-bonnet theorem. Trans. Am. Math. Soc. 112(3), 508–535 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. G.E. Bredon, Introduction to compact transformation groups (Academic, New York/London, 1972)

    MATH  Google Scholar 

  5. S.-S. Chern, On the curvature and characteristic classes of a Riemannian manifold. Abh. Math. Semin. Univ. Hambg. 20, 117–126 (1956)

    Article  MathSciNet  Google Scholar 

  6. P.E. Conner, On the action of the circle group. Michigan Math. J. 4, 241–247 (1957)

    Article  MathSciNet  Google Scholar 

  7. R. Geroch, Positive sectional curvature does not imply positive Gauss–Bonnet integrand. Proc. Am. Math. Soc. 54, 267–270 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Grove, Developments around positive sectional curvature, in Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry. Surveys in Differential Geometry, vol. 13 (International Press, Somerville, MA, 2009), pp. 117–133

    Google Scholar 

  9. K. Grove, S. Halperin, Contributions of rational homotopy theory to global problems in geometry. Publ. Math. IHES 56(1), 171–177 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  11. H. Hopf, Über die Curvatura integra geschlossener Hyperflächen. Math. Ann. 95, 340–367 (1925)

    Article  MATH  MathSciNet  Google Scholar 

  12. C.-C. Hsiung, K.M. Shiskowski, Euler–Poincaré characteristic and higher order sectional curvature. I. Trans. Am. Math. Soc. 305, 113–128 (1988)

    MATH  MathSciNet  Google Scholar 

  13. D.L. Johnson, Curvature nd Euler characteristic for six-dimensional Kähler manifolds. Ill. J. Math. 28(4), 654–675 (1984)

    MATH  Google Scholar 

  14. L. Kennard, On the Hopf conjecture with symmetry. Geom. Topol. 17, 563–593 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Kennard, Positively curved Riemannian metrics with logarithmic symmetry rank bounds. Comment. Math. Helv. arXiv:1209.4627v1 [math.DG] (to appear)

    Google Scholar 

  16. P.F. Klembeck, On Geroch’s counterexample to the algebraic Hopf conjecture. Proc. Am. Math. Soc. 59(2), 334–336 (1976)

    MATH  MathSciNet  Google Scholar 

  17. S. Kobayashi, Fixed points of isometries. Nagoya Math. J. 13, 63–68 (1958)

    MATH  MathSciNet  Google Scholar 

  18. T. Püttmann, C. Searle, The Hopf conjecture for manifolds with low cohomogeneity or high symmetry rank. Proc. Am. Math. Soc. 130(1), 163–166 (2001)

    Article  Google Scholar 

  19. X. Rong, X. Su, The Hopf conjecture for manifolds with abelian group actions. Commun. Contemp. Math. 7, 121–136 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. X. Su, Y. Wang, The Hopf conjecture for positively curved manifolds with discrete abelian group actions. Differ. Geom. Appl. 26(3), 313–322 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Wilking, Torus actions on manifolds of positive sectional curvature. Acta Math. 191(2), 259–297 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Wilking, Positively curved manifolds with symmetry. Ann. Math. 163, 607–668 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Wilking, Nonnegatively and positively curved manifolds, in Metric and Comparison Geometry. Surveys in Differential Geometry, vol. 11 (International Press, Somerville, MA, 2007), pp. 25–62

    Google Scholar 

  24. W. Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, in Metric and Comparison Geometry, Surveys in Differential Geometry, vol. 11 (International Press, Somerville, MA, 2007), pp. 63–102

    Google Scholar 

  25. W. Ziller, Riemannian Manifolds with Positive Sectional Curvature. Lecture Notes in Mathematics, vol. 2110 (2014, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Kennard .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kennard, L. (2014). On the Hopf Conjecture with Symmetry. In: Geometry of Manifolds with Non-negative Sectional Curvature. Lecture Notes in Mathematics, vol 2110. Springer, Cham. https://doi.org/10.1007/978-3-319-06373-7_5

Download citation

Publish with us

Policies and ethics