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1 Introduction and Main Results

The topological classification of compact Riemannian n-manifolds with positive
or nonnegative (sectional) curvature is a fundamental question in Riemannian
geometry. The classification in dimension 2 is well-known and follows from the
Gauss-Bonnet theorem. In dimension 3, the classification follows from Hamilton’s
work [22]; in particular, a compact, simply connected 3-manifold of positive
curvature must be diffeomorphic to the 3-sphere. In dimension n � 4, in contrast,
a complete solution to the classification problem remains elusive to this day, as
evidenced by the relative scarcity of examples and techniques for the construction of
compact manifolds with positive or nonnegative curvature. Given these difficulties,
it has been helpful to first consider the classification of the most symmetric spaces
in these classes, that is, those with a “large” group of isometries. This approach,
proposed by Grove [16], allows for flexibility in deciding which isometry groups are
to be considered “large”. The classification of simply connected positively curved
homogeneous spaces (cf. [1–3,46,48]), for example, may be framed in this program,
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which has led to other classification results and to new examples of positively and
nonnegatively curved Riemannian manifolds (cf. [6, 19–21, 44, 45, 52, 53]).

Let .M; g/ be a (compact) Riemannian manifold and let Isom.M; g/ be its
isometry group, which is a (compact) Lie group (cf. [27, 29]). There are several
possible measures for the size of Isom.M; g/, e.g., the cohomogeneity, defined as the
dimension of the orbit space of the action of Isom.M; g/ on .M; g/, the symmetry
degree, defined as the dimension of Isom.M; g/, or the symmetry rank, defined as
the rank of Isom.M; g/ and denoted by symrank.M; g/. In this note we will focus
our attention on this last invariant in the cases when .M; g/ has positive curvature
and when .M; g/ has quasipositive curvature, i.e., .M; g/ has nonnegative curvature
and a point with strictly positive curvature.

The following three problems arise naturally in the study of Riemannian
manifolds and their symmetry rank:

(a) Maximal symmetry rank: Given a class Mn of Riemannian n-manifolds, find
an optimal upper bound K for the symmetry rank of the elements in Mn.

(b) Topological classification: Classify, up to diffeomorphism, all manifolds in Mn

with symmetry rank k � K.
(c) Equivariant classification: Let M 2 Mn with symrank.M/ D k. Classify, up

to equivariant diffeomorphism, all possible (effective) isometric actions of T k

on M and realize these actions via appropriate Riemannian metrics on M .

These problems have received particular attention when Mn is the class of
compact, positively curved n-manifolds or the class of compact, simply connected
n-manifolds of nonnegative curvature (cf. [12–14, 17, 23, 26, 41, 42, 50, 51]). In a
curvature-free setting, analogs of problems (a), (b) and (c) for compact, simply
connected smooth n-manifolds, 3 � n � 6, have also been extensively studied
(cf. [10, 11, 18, 28, 30–36, 40]).

The maximal symmetry rank problem and the topological classification of com-
pact, positively curved manifolds of maximal symmetry rank were first considered
by Grove and Searle [17]:

Theorem 1.1 (Grove and Searle [17]). Let .M n; g/ be a compact Riemannian n-
manifold of positive curvature. Then the following hold:

(1) symrank.M n; g/ � b.n C 1/=2c.
(2) If symrank.M n; g/ D b.n C 1/=2c, then M n is diffeomorphic to a sphere, a

lens space or to a real or complex projective space.

Let .M; g0/ be isometric to any of the manifolds listed in Theorem 1.1(2),
equipped with its standard Riemannian metric g0. As pointed out in [17], .M; g0/

has maximal symmetry rank. We will refer to the isometric torus actions on .M; g0/

as linear torus actions. Our first result is the equivariant classification of torus
actions of maximal rank on compact, positively curved manifolds of maximal
symmetry rank:
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Theorem 1.2. Any effective, isometric torus action of maximal rank on a compact,
positively curved Riemannian manifold of maximal symmetry rank is equivariantly
diffeomorphic to a linear action.

It is natural to ask to what extent the conclusions of Theorem 1.1 hold under
weaker curvature conditions, e.g., nonnegative curvature. In this case, an upper
bound on the symmetry rank smaller than the dimension of the manifold, as in
Theorem 1.1, cannot be achieved in full generality, since the n-dimensional flat
torus has maximal symmetry rank n. Under the additional hypothesis of simple
connectivity, it has been conjectured (cf. [12]) that if .M n; g/ is a compact, simply
connected nonnegatively curved Riemannian n-manifold, then symrank.M n; g/ �
b2n=3c and that, if n D 3k and .M n; g/ has maximal symmetry rank, then
M n must be diffeomorphic to the product of k copies of the 3-sphere S

3. This
conjectural bound on the symmetry rank has been verified in dimensions at most 9;
the topological classification of compact, simply connected Riemannian manifolds
of nonnegative curvature and maximal symmetry rank has also been completed in
dimensions at most 6, verifying the diffeomorphism conjecture in dimensions 3 and
6 (cf. [12]).

In addition to nonnegatively curved (Riemannian) manifolds, one may consider
manifolds with almost positive curvature, i.e., nonnegatively curved manifolds with
positive curvature on an open and dense set, or manifolds with quasipositive curva-
ture, i.e., nonnegatively curved manifolds with a point at which all tangent 2-planes
have positive curvature. These two families may be considered as intermediate
classes between positively and nonnegatively curved manifolds, and may be used as
test cases to determine to what extent the collections of positively and nonnegatively
curved manifolds differ from each other. In the noncompact case, it follows
from Perelman’s proof of the Soul Conjecture [37] that a complete, noncompact
manifold with quasipositive curvature must be diffeomorphic to R

n; in particular, it
admits positive curvature. In the compact case, RP 2 � RP 3 admits a metric with
quasipositive curvature (cf. [49]) and cannot support a metric of positive curvature.
In contrast to this, in the simply connected case there are no known obstructions
distinguishing compact manifolds with positive, almost positive, quasipositive or
nonnegative curvature .

Although there are many examples of manifolds with quasipositive or almost
positive curvature (cf. [7–9, 15, 24, 38, 43, 47, 49]), including an exotic 7-sphere,
the topological classification of these spaces remains open and one may consider
problems (a), (b) and (c) for these classes of Riemannian manifolds. Problem (a)
was solved by Wilking [54], who showed that the bound for the symmetry rank in
Theorem 1.1(1) also holds for Riemannian manifolds with quasipositive curvature:

Theorem 1.3 (Wilking [54]). If .M n; g/ is an n-dimensional Riemannian mani-
fold of quasipositive curvature, then symrank.M n; g/ � b.n C 1/=2c.

Our second result is the topological classification of compact, simply-connected
4- and 5-manifolds of quasipositive curvature and maximal symmetry rank:
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Theorem 1.4. Let M n be a compact, simply connected Riemannian n-manifold
with quasipositive curvature and maximal symmetry rank. Then the following
hold:

(1) If n D 4, then M 4 is diffeomorphic to S
4 or CP 2.

(2) If n D 5, then M 5 is diffeomorphic to S
5.

It follows from work of Orlik and Raymond [34], in dimension 4, and of Oh [32], in
dimension 5, that smooth, effective T 2 actions on S

4 and CP 2, and smooth, effective
T 3 actions on S

5, are equivalent to linear actions. Therefore, the isometric torus
actions in Theorem 1.4 must be equivalent to linear actions; any such action can be
realized via a standard metric that is (trivially) quasipositively curved, whence the
equivariant classification follows.

Recall that the known examples of simply connected 4- and 5-manifolds of
nonnegative curvature that are not known to admit positively curved metrics are
S

2 � S
2, CP 2# ˙ CP 2, S

2 � S
3, the non-trivial bundle S

2 Q�S3 and the Wu
manifold SU.3/=SO.3/. Out of these manifolds, only S

2 � S
2 and CP 2# ˙ CP 2

admit metrics with nonnegative curvature and maximal symmetry rank 2, and the
bundles S

2 � S
3 and S

2 Q�S3 are the only ones admitting metrics of nonnegative
curvature and maximal symmetry rank 3; the Wu manifold SU.3/=SO.3/, equipped
with its standard nonnegatively curved homogeneous metric, has symmetry rank 2

(cf. [13, 14]). On the other hand, the trivial sphere bundle S
3 � S

2 carries an almost
positively curved metric with symmetry rank 1 (cf. [49]) and it is not known if the
remaining 4- and 5-manifolds listed in this paragraph admit metrics of quasipositive
curvature. Theorem 1.4 implies that any such metric would have symmetry rank at
most 1, in dimension 4, and at most 2, in dimension 5.

We conclude these remarks by recalling the so-called deformation conjecture
(cf. [15, 49]), which states that if .M; g/ is a complete Riemannian manifold of
quasipositive curvature, then M admits a metric with positive curvature. As pointed
out above, this conjecture is true if M is noncompact, false if M is compact and not
simply connected, and remains open if M is compact and simply connected (see
[39] for the construction of a metric with positive curvature on the Gromoll-Meyer
sphere, an exotic 7-sphere with quasipositive curvature). Theorem 1.4 may be seen
as supporting this conjecture when .M; g/ is compact, simply connected and has
maximal symmetry rank.

The contents of this note are organized as follows. In Sect. 2 we collect some
background material and recall the proof of Theorem 1.3. This result was not
available in the literature; for the sake of reference, we have included Wilking’s
proof as conveyed to us by M. Kerin. In Sect. 3 we prove Theorem 1.2 and in Sect. 4
we prove Theorem 1.4. The proofs follow easily from restrictions on the structure
of the manifolds and their orbit spaces imposed by the curvature hypotheses and the
rank of the actions. As the reader may have already noticed, we have strived to give
extensive references to the literature.
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2 Preliminaries

2.1 Basic Setup and Notation

Let G � M ! M , m 7! g.m/, be a smooth action of a compact Lie group G on
a smooth manifold M . The orbit G.p/ through a point p 2 M is diffeomorphic to
the quotient G=Gp , where Gp D fg 2 G W g.p/ D pg is the isotropy subgroup
of G at p. If Gp acts trivially on the normal space to the orbit at p, then G=Gp is
called a principal orbit. The set of principal orbits is open and dense in M . Since the
isotropy groups of principal orbits are all conjugate in G, all principal orbits have
the same dimension. The isotropy group of principal orbits is the principal isotropy
subgroup. If G=Gp has the same dimension as a principal orbit and Gp acts non-
trivially on the normal space at p, then G=Gp is called an exceptional orbit. An orbit
that is neither principal nor exceptional is called a singular orbit. When Gp D G,
the point p is called a fixed point of the action. Recall that the ineffective kernel of
the action is K WD fg 2 G W g.m/ D m; for all m 2 M g. The action is effective if
the ineffective kernel is trivial. The group QG D G=K always acts effectively on M .

Given a subset X � M , we will denote its projection under the orbit map � W
M ! M=G by X�. Following this convention, we will denote the orbit space M=G

by M �.
Recall that a finite dimensional length space .X; dist/ is an Alexandrov space

if it has curvature bounded from below in the triangle comparison sense (cf. [5]).
When .M; g/ is a complete, connected Riemannian manifold and G is a compact
Lie group acting on .M; g/ by isometries, the orbit space M � can be made into a
metric space .M �; dist/ by defining the distance between orbits p� and q� in M � as
the distance between the orbits G.p/ and G.q/ as subsets of .M; g/. If, in addition,
.M; g/ has sectional curvature bounded below by k, then the orbit space .M �; dist/
equipped with this so-called orbital metric is an Alexandrov space with curvature
bounded below by k. The space of directions of a general Alexandrov space at a
point x is, by definition, the completion of the space of geodesic directions at x. In
the case of an orbit space M � D M=G, the space of directions †p�M � at a point
p� 2 M � consists of geodesic directions and is isometric to

S
?
p =Gp;

where S
?
p is the unit normal sphere to the orbit G.p/ at p 2 M .

2.2 Proof of Theorem 1.3 (Wilking [54])

Let .M n; g/ be an n-dimensional Riemannian manifold of quasipositive curvature
with an (effective) isometric T k action. It suffices to show that if k > .n C 1/=2,
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then .M n; g/ cannot have quasipositive curvature. Throughout the proof we will let
�p D T k.p/ be a principal orbit of the T k action for some p 2 M . Given q 2 �p ,
we let Tq.�p/? be the orthogonal complement of Tq.�p/ in TpM . Recall that the
second fundamental form at q 2 �p is given by

˛ W Tq.�p/ � Tq.�p/ ! Tq.�p/?:

Let u 2 Tq.�p/, juj D 1, and let u? be its orthogonal complement in Tq.�p/.
Note that

dim u? D dim �p � 1 >
n � 1

2
;

dim Tq.�p/? D dim M � dim �p <
n � 1

2
:

Consider ˛.u; �/ W u? ! Tq.�p/?. For dimension reasons there exists a unit vector
w 2 u? such that ˛.u; w/ D 0.

We will now show that there exists a unit vector v 2 Tq.�p/ such that
˛.v; v/ D 0. Suppose that there is no such vector in Tq�p . Then there exists

u 2 Tq.�p/, juj D 1, such that j˛.u; u/j > 0 is minimal. By the preceding
paragraph, there exists w 2 u?, jwj D 1, such that ˛.u; w/ D 0. Consider the
function

f .t/ WD j˛..cos t /u C .sin t /w; .cos t /u C .sin t /w/j2
D j.cos2 t/˛.u; u/ C .sin2 t/˛.w; w/j2:

Since f .0/ D j˛.u; u/j2 is minimal, f 0.0/ D 0 and

0 � f 00.0/ D 4.h ˛.u; u/; ˛.w; w/ i � j˛.u; u/j2/:

In particular, since j˛.u; u/j2 > 0, we have that

h ˛.u; u/; ˛.w; w/ i > 0:

It then follows from the Gauss formula that

sec�p .u; w/ D secM .u; w/ C h ˛.u; u/; ˛.w; w/ i > 0:

This yields a contradiction, since �p is a torus equipped with a left-invariant metric,
hence flat.

It follows from the preceding paragraph that there exist orthogonal unit vectors
u; v 2 Tq.�p/ such that ˛.u; u/ D ˛.u; v/ D 0. Then, by the Gauss formula,

sec�p .u; v/ D secM .u; v/:
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Since the choice of principal orbit �p and q 2 �p was arbitrary, it follows that
there is an open and dense set of points p 2 M with a tangent plane …p � Tp.�p/

such that

0 D sec�p .…p/ D secM .…p/:

Therefore, .M; g/ cannot have quasipositive curvature. �

3 Proof of Theorem 1.2

Let .M n; g/ be a compact, positively curved Riemannian n-manifold of maximal
symmetry rank with an (effective) isometric action of a torus T k of maximal
rank. We first recall some basic facts from [17, 18]. There exists a circle subgroup
T 1 � T k with fixed point set a totally geodesic codimension 2 submanifold F n�2

of M n such that F n�2 D @.M n=T 1/. The orbit space M n=T 1 is a positively curved
Alexandrov space homeomorphic to the cone over an orbit p� at maximal distance
from @.M n=T 1/. The isotropy subgroup of p� is either T 1, Zk , k � 2, or 1, the
trivial subgroup of T 1. Since F n�2 is diffeomorphic to the space of directions of
M n=T 1 at p�, F n�2 is diffeomorphic to a sphere, if p� is a principal orbit; a lens
space or an even-dimensional real projective space, if p� is an exceptional orbit;
or to a complex projective space, if p� is a fixed point. Moreover, there exists an
invariant disc bundle decomposition

M n D D.F n�2/ [E D.G.p//;

where D.F n�2/ is a tubular neighborhood of F n�2, D.G.p// is a tubular neighbor-
hood of the orbit G.p/ corresponding to the vertex p� of the orbit space, and E is
the common boundary @D.F n�2/ D @D.G.p//. The manifold M n is diffeomorphic
to a sphere if p� is a principal orbit; a lens space or a real projective space, if p� is
an exceptional orbit; or to a complex projective space, if p� is a fixed point.

We will now prove the theorem in the case where M n is diffeomorphic to an n-
sphere Sn. We proceed by induction on the dimension n. For n D 2, it is well known
that any smooth T 1 action on S

2 is equivalent to a linear action. Fix n > 2 and let
.Sn; g/ be a positively curved n-sphere of maximal symmetry rank, so that there
exists an effective isometric T k action on .Sn; g/ with k D b.nC1/=2c. As recalled
in the preceding paragraph, there is a circle subgroup T 1 � T k with fixed point set
a totally geodesic sphere Sn�2 � S

n of codimension 2. The invariant decomposition
of Sn into a union of disc bundles induced by the T 1 action is given by

S
n ' D.Sn�2/ [@D.S1/ D.S1/

' .Sn�2 � D2/ [Sn�2�S1 .Dn�1 � S
1/;
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where D.Sn�2/ is a tubular neighborhood of the fixed point set Sn�2 of T 1 and
D.S1/ is a tubular neighborhood of the orbit T 1.p/ ' S

1 whose projection p� is
the vertex point of the orbit space S

n=T 1. As in [17], the T 1 action on

D.Sn�2/ ' S
n�2 � D2

is equivalent to the T 1 action on S
n�2 �T 1 D2, the associated disc bundle to the T 1

action on the (trivial) normal bundle of the fixed point set Sn�2.
We may write T k D T 1 ˚ T k�1, where T k�1 is the orthogonal complement of

T 1 in T k . Observe now that T k�1 acts effectively and isometrically on S
n�2 � S

n.
By induction, the action of T k�1 on S

n�2 is linear. It follows that the T k action on
S

n�2 � D2 is given by the product of a linear T k�1 action on S
n�2 and a linear T 1

action on D2. Consequently, on the boundary S
n�2 �S

1 the T k action is the product
of a linear T k�1 action on S

n�2 and a linear T 1 action on S
1. On Dn�1�S

1, the other
half of the disc bundle decomposition of Sn, the T k action is given by the product
of a linear T k�1 action on Dn�1 and a linear action T 1 action on S

1. Observe that
the linear T k�1 action on Dn�1 is the cone over the linear action of T k�1 on the
S

n�2 factor of the boundary D.S1/ ' S
n�2 � S

1. Hence, the T k action on .Sn; g/ is
equivariantly diffeomorphic to the linear T k action on S

n D S
1 �S

n�2 � R
2 �R

n�1

given by letting T 1 act orthogonally on R
2 and T k�1 act orthogonally on R

n�1.
When M n is diffeomorphic to a lens space or to a real projective space, the

conclusion follows by passing to the universal covering space and observing that
the covering torus action must be equivalent to a linear action on S

n.
The proof when M n is diffeomorphic to CP m is analogous to the case of the

sphere. For m � 2, the equivariant disc bundle decomposition is given by

CP m ' S
2n�1 �T 1 D2 [S2n�1 D2n;

where T 1 is the circle subgroup of T m fixing both CP m�1 � CP m and the vertex
of D2n, and S

2m�1 �T 1 D2 is the normal disc bundle of CP m�1 in CP m. The T m

action is equivalent to a linear T m action on CP m induced by a linear T mC1 action
on S

2mC1 via the projection map � W S2mC1 ! CP m of the Hopf action. �

4 Proof of Theorem 1.4

We proceed along the lines of [12]. Let .M n; g/ be a compact, simply connected
Riemannian n-manifold, n D 4 or 5, with quasipositive curvature and maximal
symmetry rank. Then .M n; g/ has an isometric torus action whose orbit space M �
is two-dimensional. It follows from work of several authors (cf. [4, 25, 32, 34]) that
the orbit space M � of the action has the following properties: M � is homeomorphic
to a 2-disk, the boundary of M � is the set of singular orbits and the interior of M �
consists of principal orbits. Moreover, when n D 4, there are at least two isolated
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orbits with isotropy T 2 and, when n D 5, there are at least three isolated orbits with
isotropy T 2. In both cases, points in the arcs in the boundary of M � joining orbits
with isotropy T 2 have isotropy conjugate to a circle T 1; the angle between these
arcs is �=2 and is the length of the space of directions at an orbit with isotropy T 2

in M �.
Since .M n; g/ is a quasipositively curved Riemannian manifold, M � is a

nonnegatively curved 2-manifold with non-smooth boundary and positive curvature
on an open subset. A simple comparison argument using Toponogov’s theorem
shows that there can be at most 4 points in M � corresponding to orbits with isotropy
T 2 and, if there are 4 such points, then M � must be isometric to a flat rectangle.
Since M � has positive curvature on an open subset, there can be at most 3 points in
M � with isotropy T 2. Hence, for n D 4, the orbit space M � has 2 or 3 points with
isotropy T 2 and, for n D 5, M � has exactly 3 such points. The conclusions of the
theorem now follow from the Orlik-Raymond classification of compact, smooth,
simply connected 4-manifolds with a smooth, effective T 2 action (cf. [34]), and
from Oh’s classification of compact, smooth, simply connected 5-manifolds with a
smooth, effective T 3 action (cf. [32]). �
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