Skip to main content

Riemannian Manifolds with Positive Sectional Curvature

  • Chapter
  • First Online:
Geometry of Manifolds with Non-negative Sectional Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2110))

Abstract

Of special interest in the history of Riemannian geometry have been manifolds with positive sectional curvature. In these notes we give a survey of this subject and recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These are notes from a series of lectures given in Guanajuato, Mexico in 2010. The author was supported by a grant from the National Science Foundation and by the Mexican National Academy of Sciences.

References

  1. A.V. Alekseevsy, D.V. Alekseevsy, G-manifolds with one dimensional orbit space. Adv. Sov. Math. 8, 1–31 (1992)

    Google Scholar 

  2. S. Aloff, N. Wallach, An infinite family of 7–manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Bazaikin, On a family of 13-dimensional closed Riemannian manifolds of positive curvature. Siberian Math. J. 37, 1068–1085 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Bérard Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive. J. Math. pure et appl. 55, 47–68 (1976)

    MATH  Google Scholar 

  5. M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa 15, 179–246 (1961)

    MATH  MathSciNet  Google Scholar 

  6. C. Böhm, B. Wilking, Manifolds with positive curvature operators are space forms. Ann. Math. 167, 1079-1097 (2008)

    Article  MATH  Google Scholar 

  7. W. Blaschke, Vorlesungen ber Differentialgeometrie (Springer, Berlin, 1921)

    Google Scholar 

  8. W. Boy, Uber die Curvatura integra und die Topologie geschlossener Flächen. Math. Ann. 57, 151–184 (1903)

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Chaves, A. Derdzinski, A. Rigas, A condition for positivity of curvature. Bol. Soc. Brasil. Mat. 23, 153–165 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Chinburg, C. Escher, W. Ziller, Topological properties of Eschenburg spaces and 3-Sasakian manifolds. Math. Ann. 339, 3–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. O. Dearricott, A 7-manifold with positive curvature. Duke Math. J. 158, 307–346 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Derdzinski, A. Rigas, Unflat connections in 3-sphere bundles over \(\mathbb{S}^{4}\). Trans. Am. Math. Soc. 265, 485–493 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Dombrowski, 150 years after Gauss’ Disquisitiones generales circa superficies curvas, Astérisque 62 (Société Mathématique de France, Paris, 1979)

    Google Scholar 

  14. J.H. Eschenburg, New examples of manifolds with strictly positive curvature. Invent. Math. 66, 469–480 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. J.H. Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen. Schriftenr. Math. Inst. Univ. Münster 32, 1–177 (1984)

    MathSciNet  Google Scholar 

  16. J. Eschenburg, A. Kollross, K. Shankar, Free isometric circle actions on compact symmetric spaces. Geom. Dedicata 103, 35–44 (2003)

    Article  MathSciNet  Google Scholar 

  17. R. Fintushel, Circle actions on Simply Connected 4-manifolds. Trans. Am. Math. Soc. 230, 147–171 (1977)

    MATH  MathSciNet  Google Scholar 

  18. L.A. Florit, W. Ziller, Orbifold fibrations of Eschenburg spaces. Geom. Ded. 127, 159–175 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. L.A. Florit, W. Ziller, On the topology of positively curved Bazaikin spaces. J. Eur. Math. Soc. 11, 189-205 (2009)

    MATH  MathSciNet  Google Scholar 

  20. L.A. Florit, W. Ziller, Topological obstructions to fatness. Geom. Topol. 15, 891–925 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Goette, Adiabatic limits of Seifert fibrations, Dedekind sums, and the diffeomorphism type of certain 7-manifolds. J. Eur. Math. Soc. (2014, in press)

    Google Scholar 

  22. S. Goette, N. Kitchloo, K. Shankar, Diffeomorphism type of the Berger space SO(5)∕SO(3). Am. Math. J. 126, 395–416 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. D. Gromoll, W. Meyer, An exotic sphere with nonnegative sectional curvature. Ann. Math. (2) 100, 401–406 (1974)

    Google Scholar 

  24. K. Grove, S. Halperin, Contributions of rational homotopy theory to global problems in geometry. Publ. Math. I.H.E.S. 56, 171–177 (1982)

    Google Scholar 

  25. K. Grove, C. Searle, Positively curved manifolds with maximal symmetry rank. J. Pure Appl. Algebra 91, 137–142 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Grove, B. Wilking, A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry (2011, preprint)

    Google Scholar 

  27. K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres. Ann. Math. 152, 331–367 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Grove, R. Shankar, W. Ziller, Symmetries of Eschenburg spaces and the Chern problem. Special Issue in honor of S.S. Chern. Asian J. Math. 10, 647–662 (2006)

    Google Scholar 

  29. K. Grove, B. Wilking, W. Ziller, Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differ. Geom. 78, 33–111 (2008)

    MATH  MathSciNet  Google Scholar 

  30. K. Grove, L. Verdiani, W. Ziller, An exotic \(T_{1}\mathbb{S}^{4}\) with positive curvature. Geom. Funct. Anal. 21, 499–524 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. N. Hitchin, A new family of Einstein metrics, in Manifolds and Geometry (Pisa, 1993). Sympos. Math., XXXVI (Cambridge University Press, Cambridge, 1996), pp. 190–222

    Google Scholar 

  32. N. Hopf, Zum Clifford Kleinschen Raumproblem. Math. Ann. 95, 313–339 (1926)

    MathSciNet  Google Scholar 

  33. N. Hopf, W. Rinow, Über den Begriff der vollständigen differential-geometrischen Fläche. Comm. Math. Helvetici 3, 209-225 (1931)

    Article  MathSciNet  Google Scholar 

  34. W.Y. Hsiang, B. Kleiner, On the topology of positively curved 4-manifolds with symmetry. J. Differ. Geom. 29, 615–621 (1989)

    MATH  MathSciNet  Google Scholar 

  35. L. Kennard, On the Hopf conjecture with symmetry. Geom. Topol. 161, 563–593 (2013)

    Article  MathSciNet  Google Scholar 

  36. L. Kennard, Positively curved Riemannian metrics with logarithmic symmetry rank bounds. Comment. Math. Helv. (in press)

    Google Scholar 

  37. M. Kreck, S. Stolz, Some non diffeomorphic homeomorphic homogeneous 7-manifolds with positive sectional curvature. J. Differ. Geom. 33, 465–486 (1991)

    MATH  MathSciNet  Google Scholar 

  38. S.B. Myers, Riemannian manifolds in the large. Duke Math. J. 1, 42–43 (1935)

    Google Scholar 

  39. S.B. Myers, Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  Google Scholar 

  40. G.P. Paternain, J. Petean, Minimal entropy and collapsing with curvature bounded from below. Invent. Math. 151, 415–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. P. Petersen, F. Wilhelm, An exotic sphere with positive sectional curvature (2008, preprint)

    Google Scholar 

  42. A. Preissmann, Quelques propriétés globales des espaces de Riemann. Comm. Math. Helv. 15, 175–216 (1943)

    Article  Google Scholar 

  43. J.L. Synge, The first and second variations of the length integral in Riemann space. Proc. Lond. Math. Soc. 25, 247–264 (1925)

    MathSciNet  Google Scholar 

  44. J.L. Synge, On the neighborhood of a geodesic in Riemannian space. Duke Math. J. 1, 527–537 (1935)

    Article  MathSciNet  Google Scholar 

  45. J.L. Synge, On the connectivity of spaces of positive curvature. Q. J. Math. 7, 316–320 (1936)

    Article  Google Scholar 

  46. T. Püttmann, Optimal pinching constants of odd dimensional homogeneous spaces. Invent. math. 138, 631–684 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  47. I.J. Schoenberg, Some applications of the calculus of variations to Riemannian geometry. Ann. Math. 33, 485–495 (1932)

    Article  MathSciNet  Google Scholar 

  48. J.A. Thorpe, On the curvature tensor of a positively curved 4-manifold, in Mathematical Congress, Dalhousie Univ., Halifax, N.S. Canad. Math. Congr., Montreal, Que. (1972), pp. 156–159

    Google Scholar 

  49. J.A. Thorpe, The zeros of nonnegative curvature operators. J. Differ. Geom. 5, 113–125 (1971). Erratum J. Diff. Geom. 11, 315 (1976)

    Google Scholar 

  50. L. Verdiani, Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Differ. Geom. 68, 31–72 (2004)

    MATH  MathSciNet  Google Scholar 

  51. L. Verdiani, W. Ziller, Positively curved homogeneous metrics on spheres. Math. Zeitschrift 261, 473–488 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. L. Verdiani, W. Ziller, Concavity and rigidity in non-negative curvature. J. Differ. Geom. 97 (2014)

    Google Scholar 

  53. F. Wilhelm, An exotic sphere with positive curvature almost everywhere. J. Geom. Anal. 11, 519–560 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. B. Wilking, Manifolds with positive sectional curvature almost everywhere. Invent. Math. 148, 117–141 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. B. Wilking, Positively curved manifolds with symmetry. Ann. Math. 163, 607–668 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. N. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature. Ann. Math. 96, 277–295 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  57. A. Weinstein, Fat bundles and symplectic manifolds. Adv. Math. 37, 239–250 (1980)

    Article  MATH  Google Scholar 

  58. W. Ziller, Examples of Riemannian manifolds with nonnegative sectional curvature, in Metric and Comparison Geometry. Surveys in Differential Geometry, vol. 11, ed. by K. Grove, J. Cheeger, International Press, (2007), pp. 63–102

    Google Scholar 

  59. W. Ziller, On the geometry of cohomogeneity one manifolds with positive curvature, in Riemannian Topology and Geometric Structures on Manifolds, in honor of Charles P. Boyer’s 65th birthday. Progress in Mathematics, Birkhaueser, vol. 271 (2009), pp. 233–262

    Google Scholar 

  60. S. Zoltek, Nonnegative curvature operators: some nontrivial examples. J. Differ. Geom. 14, 303–315 (1979)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Ziller .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ziller, W. (2014). Riemannian Manifolds with Positive Sectional Curvature. In: Geometry of Manifolds with Non-negative Sectional Curvature. Lecture Notes in Mathematics, vol 2110. Springer, Cham. https://doi.org/10.1007/978-3-319-06373-7_1

Download citation

Publish with us

Policies and ethics