Skip to main content

Irregularities of Distribution and Average Decay of Fourier Transforms

  • Chapter
  • First Online:
A Panorama of Discrepancy Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2107))

Abstract

In Geometric Discrepancy we usually test a distribution of N points against a suitable family of sets. If this family consists of dilated, translated and rotated copies of a given d-dimensional convex body \(D \subset \left [0,1\right )^{d}\), then a result proved by W. Schmidt, J. Beck and H. Montgomery shows that the corresponding L 2 discrepancy cannot be smaller than \(c_{d}N^{\left (d-1\right )/2d}\). Moreover, this estimate is sharp, thanks to results of D. Kendall, J. Beck and W. Chen. Both lower and upper bounds are consequences of estimates of the decay of \(\left \Vert \hat{\chi }_{D}\left (\rho \cdot \right )\right \Vert _{L^{2}\left (\varSigma _{d-1}\right )}\) for large ρ, where \(\hat{\chi }_{D}\) is the Fourier transform (expressed in polar coordinates) of the characteristic function of the convex body D, while Σ d−1 is the unit sphere in \(\mathbb{R}^{d}\). In this chapter we provide the Fourier analytic background and we carefully investigate the relation between the L 2 discrepancy and the estimates of \(\left \Vert \hat{\chi }_{D}\left (\rho \cdot \right )\right \Vert _{L^{2}\left (\varSigma _{d-1}\right )}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually the convexity hypothesis allows us to integrate by parts at least once without using any regularity assumption on ∂ B. In this way we get the bound ρ −1 (uniformly in σ), which is enough to prove the theorem in the dimensions d = 2 and d = 3.

  2. 2.

    D. Kendall seems to have been the first one to realize that certain lattice points problems can be handled using multi-dimensional Fourier analysis.

References

  1. J.-G. Bak, D. McMichael, J. Vance, S. Wainger, Fourier transforms of surface area measure on convex surfaces in 3. Am. J. Math. 111(4), 633–668 (1989). doi:10.2307/2374816

  2. J. Beck, W.W.L. Chen, Note on irregularities of distribution. II. Proc. Lond. Math. Soc. III. Ser. 61(2), 251–272 (1990). doi:10.1112/plms/s3-61.2.251

  3. J. Beck, Irregularities of distribution. I. Acta Math. 159, 1–49 (1987). doi:10.1007/BF02392553

  4. J. Beck, W.W.L. Chen, Irregularities of Distribution. Cambridge Tracts in Mathematics vol. 89 (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  5. D.R. Bellhouse, Area estimation by point-counting techniques. Biometrics 37, 303–312 (1981). doi:10.2307/2530419

  6. L. Brandolini, S. Hofmann, A. Iosevich, Sharp rate of average decay of the Fourier transform of a bounded set. Geom. Funct. Anal. 13(4), 671–680 (2003). doi:10.1007/s00039-003-0426-7

  7. L. Brandolini, A. Iosevich, G. Travaglini, Planar convex bodies, Fourier transform, lattice points, and irregularities of distribution. Trans. Am. Math. Soc. 355(9), 3513–3535 (2003). doi:10.1090/S0002-9947-03-03240-9

  8. L. Brandolini, L. Colzani, A. Iosevich, A. Podkorytov, G. Travaglini, Geometry of the Gauss map and lattice points in convex domains. Mathematika 48(1–2), 107–117 (2001). doi:10.1112/S0025579300014376

  9. L. Brandolini, Estimates for Lebesgue constants in dimension two. Ann. Mat. Pura Appl. IV. Ser. 156, 231–242 (1990). doi:10.1007/BF01766981

  10. L. Brandolini, G. Travaglini, Pointwise convergence of Fejér type means. Tohoku Math. J. 49(3), 323–336 (1997). doi:10.2748/tmj/1178225106

  11. L. Brandolini, L. Colzani, G. Travaglini, Average decay of Fourier transforms and integer points in polyhedra. Ark. Mat. 35(2), 253–275 (1997). doi:10.1007/BF02559969

  12. L. Brandolini, A. Greenleaf, G. Travaglini, \(L^{p} - L^{p^{{\prime}} }\) estimates for overdetermined Radon transforms. Trans. Am. Math. Soc. 359(6), 2559–2575 (2007). doi:10.1090/S0002-9947-07-03953-0

  13. L. Brandolini, M. Rigoli, G. Travaglini, Average decay of Fourier transforms and geometry of convex sets. Rev. Mat. Iberoam. 14(3), 519–560 (1998). doi:10.4171/RMI/244

  14. L. Brandolini, W.W.L. Chen, G. Gigante, G. Travaglini, Discrepancy for randomized Riemann sums. Proc. Am. Math. Soc. 137(10), 3187–3196 (2009). doi:10.1090/S0002-9939-09-09975-4

  15. L. Brandolini, G. Gigante, S. Thangavelu, G. Travaglini, Convolution operators defined by singular measures on the motion group. Indiana Univ. Math. J. 59(6), 1935–1946 (2010). doi:10.1512/iumj.2010.59.4100

  16. J. Bruna, A. Nagel, S. Wainger, Convex hypersurfaces and Fourier transforms. Ann. Math. 127(2), 333–365 (1988). doi:10.2307/2007057

  17. J.W.S. Cassels, On the sums of powers of complex numbers. Acta Math. Acad. Sci. Hung. 7, 283–289 (1956). doi:10.1007/BF02020524

  18. W.W.L. Chen, Lectures on Irregularities of Point Distribution (2000). http://rutherglen.ics.mq.edu.au/wchen/researchfolder/iod00.pdf,2000

  19. W.W.L. Chen, Fourier techniques in the theory of irregularities of point distribution, in Fourier Analysis and Convexity, ed. by L. Brandolini L. Colzani, A. Iosevich, G. Travaglini, Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2004), pp. 59–82

    Google Scholar 

  20. W.W.L. Chen, Upper Bounds in Discrepancy Theory, ed. by L. Plaskota, et al., MCQMC: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Proceedings of the 9th International Conference, MCQMC 2010, Warsaw, Poland, August 15–20, 2010 (Springer, Berlin). Springer Proceedings in Mathematics and Statistics Notes, vol. 23 (2012). doi:10.1007/978-3-642-27440-4_2

  21. W.W.L. Chen, M.M. Skriganov, Upper Bounds in Classical Discrepancy Theory, ed. by W.W.L. Chen, A. Srivastav, G. Travaglini, Panorama of Discrepancy Theory (Springer, New York, 2013)

    Google Scholar 

  22. W.W.L. Chen, G. Travaglini, Deterministic and probabilistic discrepancies. Ark. Mat. 47(2), 273–293 (2009). doi:10.1007/s11512-008-0091-z

  23. W.W.L. Chen, G. Travaglini, An L 1 estimate for half-space discrepancy. Acta Arith. 146(3), 203–214 (2011). doi:10.4064/aa146-3-1

  24. Y. Colin de Verdière, Nombre de points entiers dans une famille homothétique de domaines de \(\mathbb{R}^{n}\). Invent. Math. 43, 15–52 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Colzani, Approximation of Lebesgue integrals by Riemann sums and lattice points in domains with fractal boundary. Monatsh. Math. 123(4), 299–308 (1997). doi:10.1007/BF01326765

  26. H. Davenport, Note on irregularities of distribution. Mathematika Lond. 3, 131–135 (1956). doi:10.1112/S0025579300001807

  27. D. Gioev, Moduli of Continuity and Average Decay of Fourier Transforms: Two-Sided Estimates., ed. by J. Baik, et al., Integrable systems and random matrices. In honor of Percy Deift. Conference on integrable systems, random matrices, and applications in honor of Percy Deift’s 60th birthday, New York, NY, USA, May 22–26, 2006 (American Mathematical Society (AMS), Providence, RI, 2008). Contemporary Mathematics 458, 377–391 (2008)

    Google Scholar 

  28. P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers, 2nd edn. North-Holland Mathematical Library, vol. 37 (North-Holland, Amsterdam, 1987), p. 732

    Google Scholar 

  29. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  30. C.S. Herz, Fourier transforms related to convex sets. Ann. Math. 75, 81–92 (1962). doi:10.2307/1970421

  31. F.J. Hickernell, H. Woźniakowski, The price of pessimism for multidimensional quadrature. J. Complexity 17(4), 625–659 (2001). doi:10.1006/jcom.2001.0593

  32. E. Hlawka, Über Integrale auf konvexen Körpern. I. Monatsh. Math. 54, 1–36 (1950). doi:10.1007/BF01304101

  33. E. Hlawka, Über Integrale auf konvexen Körpern. II. Monatsh. Math. 54, 81–99 (1950). doi:10.1007/BF01304101

  34. M.N. Huxley, Area, Lattice Points, and Exponential Sums. London Mathematical Society Monographs. New Series, vol. 13 (Clarendon Press, Oxford, 1996)

    Google Scholar 

  35. D.G. Kendall, On the number of lattice points inside a random oval. Q. J. Math., Oxford Series 19, 1–26 (1948)

    Google Scholar 

  36. T. Kollig, A. Keller, Efficient Multidimensional Sampling. Comput. Graphic Forum 21(3), 557–563 (2002)

    Article  Google Scholar 

  37. M.N. Kolountzakis, T. Wolff, On the Steinhaus tiling problem. Mathematika 46(2), 253–280 (1999). doi:10.1112/S0025579300007750

  38. S.V. Konyagin, M.M. Skriganov, A.V. Sobolev, On a lattice point problem arising in the spectral analysis of periodic operators. Mathematika 50(1–2), 87–98 (2003). doi:10.1112/S0025579300014819

  39. E. Krätzel, Lattice Points. Mathematics and Its Applications: East European Series, vol. 33 (Kluwer Academic, Berlin; VEB Deutscher Verlag der Wissenschaften, Dordrecht, 1988)

    Google Scholar 

  40. J. Matoušek, Geometric Discrepancy. An Illustrated Guide. Revised paperback reprint of the 1999 original. Algorithms and Combinatorics, vol. 18 (Springer, Dordrecht, 2010). doi:10.1007/978-3-642-03942-3

  41. D.P. Mitchell, Consequences of Stratified Sampling in Graphics, in SIGGRAPH ’96 Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (Association for Computing Machinery, New York, 1996), pp. 277–280

    Google Scholar 

  42. H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. Regional Conference Series in Mathematics, vol. 84 (American Mathematical Society, Providence, RI, 1994)

    Google Scholar 

  43. L. Parnovski, N. Sidorova, Critical dimensions for counting lattice points in Euclidean annuli. Math. Model. Nat. Phenom. 5(4), 293–316 (2010). doi:10.1051/mmnp/20105413

  44. L. Parnovski, A.V. Sobolev, On the Bethe-Sommerfeld conjecture for the polyharmonic operator. Duke Math. J. 107(2), 209–238 (2001). doi:10.1215/S0012-7094-01-10721-7

  45. A.N. Podkorytov, On the asymptotic behaviour of the Fourier transform on a convex curve. Vestn. Leningr. Univ. Math. 24(2), 57–65 (1991)

    MathSciNet  MATH  Google Scholar 

  46. O. Ramaré, On long κ-tuples with few prime factors. Proc. Lond. Math. Soc. 104(1), 158–196 (2012). doi:10.1112/plms/pdr026

  47. B. Randol, A lattice-point problem. II. Trans. Am. Math. Soc. 125, 101–113 (1966). doi:10.2307/1994590

  48. B. Randol, On the Fourier transform of the indicator function of a planar set. Trans. Am. Math. Soc. 139, 271–278 (1969). doi:10.2307/1995319

  49. F. Ricci, G. Travaglini, Convex curves, Radon transforms and convolution operators defined by singular measures. Proc. Am. Math. Soc. 129(6), 1739–1744 (2001). doi:10.1090/S0002-9939-00-05751-8

  50. K.F. Roth, On irregularities of distribution. Mathematika 1, 73–79 (1954). doi:10.1112/S0025579300000541

  51. W.M. Schmidt, Irregularities of distribution. IV. Invent. Math. 7, 55–82 (1969). doi:10.1007/BF01418774

  52. W.M. Schmidt, Lectures on Irregularities of Distribution. (Notes by T. N. Shorey). Tata Institute of Fundamental Research, Lectures on Mathematics and Physics: Mathematics (Tata Institute of Fundamental Research, Bombay, 1977)

    Google Scholar 

  53. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 44 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  54. M.M. Skriganov, Ergodic theory on SL(n), diophantine approximations and anomalies in the lattice point problem. Invent. Math. 132(1), 1–72 (1998). doi:10.1007/s002220050217

  55. C.D. Sogge, Fourier Integrals in Classical Analysis. Cambridge Tracts in Mathematics, vol. 105 (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  56. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43 (Princeton University Press, Princeton, NJ, 1993)

    Google Scholar 

  57. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series (Princeton University Press, Princeton, NJ, 1971)

    Google Scholar 

  58. E.M. Stein, N.J. Weiss, On the convergence of Poisson integrals. Trans. Am. Math. Soc. 140, 35–54 (1969). doi:10.2307/1995121

  59. E.M. Stein, M.H. Taibleson, G. Weiss, Weak type estimates for maximal operators on certain H p classes. Rend. Circ. Mat. Palermo 1, 81–97 (1981)

    MathSciNet  MATH  Google Scholar 

  60. M. Tarnopolska-Weiss, On the number of lattice points in a compact n-dimensional polyhedron. Proc. Am. Math. Soc. 74, 124–127 (1979). doi:10.2307/2042117

  61. G. Travaglini, Number theory, Fourier analysis and Geometric discrepancy. London Mathematical Society Student Texts, vol. 81 (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  62. G. Travaglini, Average decay of the Fourier transform, in Fourier Analysis and Convexity, ed. by L. Brandolini, L. Colzani, A. Iosevich, G. Travaglini Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2004), pp. 245–268

    Chapter  Google Scholar 

  63. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1922)

    MATH  Google Scholar 

  64. R.L. Wheeden, A. Zygmund, Measure and Integral. An Introduction to Real Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 43 (Marcel Dekker, New York/Basel, 1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Brandolini or Giancarlo Travaglini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brandolini, L., Gigante, G., Travaglini, G. (2014). Irregularities of Distribution and Average Decay of Fourier Transforms. In: Chen, W., Srivastav, A., Travaglini, G. (eds) A Panorama of Discrepancy Theory. Lecture Notes in Mathematics, vol 2107. Springer, Cham. https://doi.org/10.1007/978-3-319-04696-9_3

Download citation

Publish with us

Policies and ethics