Skip to main content

Roth’s Orthogonal Function Method in Discrepancy Theory and Some New Connections

  • Chapter
  • First Online:
A Panorama of Discrepancy Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2107))

Abstract

In this survey we give a comprehensive, but gentle introduction to the circle of questions surrounding the classical problems of discrepancy theory, unified by the same approach originated in the work of Klaus Roth (Mathematika 1:73–79, 1954) and based on multiparameter Haar (or other orthogonal) function expansions. Traditionally, the most important estimates of the discrepancy function were obtained using variations of this method. However, despite a large amount of work in this direction, the most important questions in the subject remain wide open, even at the level of conjectures. The area, as well as the method, has enjoyed an outburst of activity due to the recent breakthrough improvement of the higher-dimensional discrepancy bounds and the revealed important connections between this subject and harmonic analysis, probability (small deviation of the Brownian motion), and approximation theory (metric entropy of spaces with mixed smoothness). Without assuming any prior knowledge of the subject, we present the history and different manifestations of the method, its applications to related problems in various fields, and a detailed and intuitive outline of the latest higher-dimensional discrepancy estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.W. Anderson, The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6, 170–176 (1955). doi:10.2307/2032333

  2. R.F. Bass, Probability estimates for multiparameter Brownian processes. Ann. Probab. 16(1), 251–264 (1988). doi:10.1214/aop/1176991899

  3. J. Beck, W.W.L. Chen, Note on irregularities of distribution. Mathematika 33, 148–163 (1986). doi:10.1112/S0025579300013966

  4. J. Beck, W.W.L. Chen, Note on irregularities of distribution. II. Proc. Lond. Math. Soc. III. Ser. 61(2), 251–272 (1990). doi:10.1112/plms/s3-61.2.251

  5. J. Beck, Balanced two-colorings of finite sets in the square. I. Combinatorica 1(4), 327–335 (1981). doi:10.1007/BF02579453

  6. J. Beck, Irregularities of distribution. I. Acta Math. 159(1–2), 1–49 (1987). doi:10.1007/BF02392553

  7. J. Beck, Irregularities of distribution. II. Proc. Lond. Math. Soc. III. Ser. 56(1), 1–50 (1988). doi:10.1112/plms/s3-56.1.1

  8. J. Beck, A two-dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution. Compos. Math. 72(3), 269–339 (1989)

    MATH  Google Scholar 

  9. J. Beck, The modulus of polynomials with zeros on the unit circle: A problem of Erdős. Ann. Math. 134(2), 609–651 (1991). doi:10.2307/2944358

  10. J. Beck, W.W.L. Chen, Irregularities of Distribution. Cambridge Tracts in Mathematics, vol. 89 (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  11. R. Béjian, Minoration de la discrepance d’une suite quelconque sur T. Acta Arith. 41(2), 185–202 (1982)

    Google Scholar 

  12. A. Bernard, Espaces H 1 de martingales à deux indices. Dualité avec les martingales de type “BMO”. Bull. Sci. Math. II. Ser. 103(3), 297–303 (1979)

    Google Scholar 

  13. D. Bilyk, Cyclic shifts of the van der Corput set. Proc. Am. Math. Soc. 137(8), 2591–2600 (2009). doi:10.1090/S0002-9939-09-09854-2

  14. D. Bilyk, On Roth’s orthogonal function method in discrepancy theory. Uniform Distrib. Theory 6(1), 143–184 (2011)

    MathSciNet  MATH  Google Scholar 

  15. D. Bilyk, M.T. Lacey, On the small ball inequality in three dimensions. Duke Math. J. 143(1), 81–115 (2008). doi:10.1215/00127094-2008-016

  16. D. Bilyk, M.T. Lacey, A. Vagharshakyan, On the signed small ball inequality. Online J. Analytic Combinator. 3 (2008)

    Google Scholar 

  17. D. Bilyk, M.T. Lacey, A. Vagharshakyan, On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470–2502 (2008). doi:10.1016/j.jfa.2007.09.010

  18. D. Bilyk, M.T. Lacey, I. Parissis, A. Vagharshakyan, Exponential squared integrability of the discrepancy function in two dimensions. Mathematika 55(1–2), 1–27 (2009). doi:10.1112/S0025579300000930

  19. D. Bilyk, M.T. Lacey, I. Parissis, A. Vagharshakyan, A Three-Dimensional Signed Small Ball Inequality. (Kendrick Press, Heber City, UT, 2010)

    Google Scholar 

  20. V.I. Bogachev, Gaussian Measures. Transl. from the Russian by the author. Mathematical Surveys and Monographs, vol. 62 (American Mathematical Society (AMS), Providence, RI, 1998)

    Google Scholar 

  21. D.L. Burkholder, Sharp Inequalities for Martingales and Stochastic Integrals. Les processus stochastiques, Coll. Paul Lévy, Palaiseau/Fr. 1987, Astérisque 157–158, 75–94, 1988

    Google Scholar 

  22. S.-Y.A. Chang, R. Fefferman, A continuous version of duality of \(H^{1}\) with BMO on the bidisc. Ann. Math. 112(1), 179–201 (1980). doi:10.2307/1971324

  23. S.-Y.A. Chang, R. Fefferman, Some recent developments in Fourier analysis and \(H^{p}\)-theory on product domains. Bull. Am. Math. Soc. New Ser. 12(1), 1–43 (1985). doi:10.1090/S0273-0979-1985-15291-7

  24. S.-Y.A. Chang, J.M. Wilson, T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators. Comment. Math. Helv. 60(2), 217–246 (1985). doi:10.1007/BF02567411

  25. B. Chazelle, The Discrepancy Method. Randomness and Complexity. (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  26. B. Chazelle, Complexity bounds via Roth’s method of orthogonal functions, in Analytic Number Theory. Essays in Honour of Klaus Roth on the Occasion of his 80th Birthday, ed. by W.W.L. Chen (Cambridge University Press, Cambridge, 2009), pp. 144–149

    Google Scholar 

  27. W.W.L. Chen, On irregularities of distribution. Mathematika 27(2), 153–170 (1980). doi:10.1112/S0025579300010044

  28. W.W.L. Chen, On irregularities of distribution. II. Q. J. Math. Oxford. II. Ser. 34(135), 257–279 (1983). doi:10.1093/qmath/34.3.257

  29. W.W.L. Chen, On irregularities of distribution. III. J. Aust. Math. Soc. Ser. A 60(2), 228–244 (1996)

    Article  MATH  Google Scholar 

  30. W.W.L. Chen, On irregularities of distribution. IV. J. Number Theory 80(1), 44–59 (2000). doi:10.1006/jnth.1999.2442

  31. W.W.L. Chen, Fourier techniques in the theory of irregularities of point distribution, in Fourier Analysis and Convexity, ed. by L. Brandolini, Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2004), pp. 59–82

    Google Scholar 

  32. W.W.L. Chen, private communication, Palo Alto, CA (2008)

    Google Scholar 

  33. W.W.L. Chen, M.M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67–95 (2002). doi:10.1515/crll.2002.037

  34. W.W.L. Chen, M.M. Skriganov, Davenport’s theorem in the theory of irregularities of point distribution. J. Math. Sci. New York 115(1), 2076–2084 (2003). doi:10.1023/A:1022668317029

  35. W.W.L. Chen, G. Travaglini, Some of Roth’s ideas in discrepancy theory, in Analytic Number Theory. Essays in Honour of Klaus Roth on the Occasion of his 80th Birthday, ed. by W.W.L. Chen (Cambridge University Press, Cambridge, 2009), pp. 150–163

    Google Scholar 

  36. E. Csaki, On Small Values of the Square Integral of a Multiparameter Wiener Process. (Reidel, Dordrecht, 1984)

    Google Scholar 

  37. I. Daubechies, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. (SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992)

    Google Scholar 

  38. H. Davenport, Note on irregularities of distribution. Mathematika Lond. 3, 131–135 (1956). doi:10.1112/S0025579300001807

  39. J. Dick, F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  40. T. Dunker, T. Kühn, M. Lifshits, W. Linde, Metric entropy of the integration operator and small ball probabilities for the Brownian sheet. C. R. Acad. Sci. Paris Sér. I Math. 326(3), 347–352 (1998). doi:10.1016/S0764-4442(97)82993-X

  41. H. Faure, F. Pillichshammer, L p discrepancy of generalized two-dimensional Hammersley point sets. Monatsh. Math. 158(1), 31–61 (2009). doi:10.1007/s00605-008-0039-1

  42. R. Fefferman, J. Pipher, Multiparameter operators and sharp weighted inequalities. Am. J. Math. 119(2), 337–369 (1997). doi:10.1353/ajm.1997.0011

  43. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II. (Wiley, New York-London-Sydney, 1966)

    MATH  Google Scholar 

  44. K.K. Frolov, An upper estimate of the discrepancy in the \(L_{p}\)-metric, 2 ≤ p < . Dokl. Akad. Nauk SSSR 252, 805–807 (1980)

    Google Scholar 

  45. E.N. Gilbert, A comparison of signalling alphabets. Bell Syst. Tech. J. 3, 504–522 (1952)

    Article  Google Scholar 

  46. L. Grafakos, Classical and Modern Fourier Analysis. (Pearson/Prentice Hall, Upper Saddle River, NJ, 2004)

    Google Scholar 

  47. A. Haar, Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.). Math. Annal. 69, 331–371 (1910). doi:10.1007/BF01456326

  48. G. Halász, On Roth’s method in the theory of irregularities of point distributions, in Recent Progress in Analytic Number Theory, vol. 2, ed. by H. Halberstam, C. Hooley, vol. 2 (London Academic Press, Durham, 1981), pp. 79–94

    Google Scholar 

  49. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Num. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  50. J.H. Halton, S.K. Zaremba, The extreme and \(L^{2}\) discrepancies of some plane sets. Monatsh. Math. 73, 316–328 (1969). doi:10.1007/BF01298982

  51. J.M. Hammersley, Monte Carlo methods for solving multivariable problems. Ann. N.Y. Acad. Sci. 86, 844–874 (1960). doi:10.1111/j.1749-6632.1960.tb42846.x

  52. S. Heinrich, Some open problems concerning the star-discrepancy. J. Complexity 19(1), 416–419 (2003). doi:10.1016/S0885-064X(03)00014-1

  53. A. Hinrichs, Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness. Math. Nachr. 283(3), 478–488 (2010). doi:10.1002/mana.200910265

  54. A. Hinrichs, L. Markhasin, On lower bounds for the L 2-discrepancy. J. Complexity 27(2), 127–132 (2011). doi:10.1016/j.jco.2010.11.002

  55. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963). doi:10.2307/2282952

  56. Y. Katznelson, An Introduction to Harmonic Analysis, 3rd edn. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  57. P. Kritzer, On some remarkable properties of the two-dimensional Hammersley point set in base 2. J. Thor. Nombres Bordx. 18(1), 203–221 (2006). doi:10.5802/jtnb.540

  58. P. Kritzer, F. Pillichshammer, An exact formula for L 2 discrepancy of the shifted Hammersley point set. Unif. Distrib. Theory 1(1), 1–13 (2006)

    MathSciNet  MATH  Google Scholar 

  59. J. Kuelbs, W.V. Li, Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116(1), 133–157 (1993). doi:10.1006/jfan.1993.1107

  60. L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied Mathematics, a Wiley-Interscience Publication (Wiley, New York-London-Sydney, 1974)

    Google Scholar 

  61. M.T. Lacey, Small ball and discrepancy inequalities. arXiv: abs/math/0609816 (2006)

    Google Scholar 

  62. M.T. Lacey, On the discrepancy function in arbitrary dimension, close to L 1. Anal. Math. 34(2), 119–136 (2008). doi:10.1007/s10476-008-0203-9

  63. G. Larcher, F. Pillichshammer, Walsh series analysis of the L 2-discrepancy of symmetrisized point sets. Monatsh. Math. 132(1), 1–18 (2001). doi:10.1007/s006050170054

  64. M. Ledoux, M. Talagrand, Probability in Banach Spaces. Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Folge, 23 (Springer, Berlin, 1991)

    Google Scholar 

  65. M. Lerch, Question 1547. L’Intermediaire Math. 11, 144–145 (1904)

    Google Scholar 

  66. P. Lévy, Problèmes Concrets d’analyse Fonctionelle. (Gautheir-Villars, Paris, 1951)

    Google Scholar 

  67. W.V. Li, Q.-M. Shao, Gaussian Processes: Inequalities, Small Ball Probabilities and Applications., ed. by D.N. Shanbhag, et al., Stochastic Processes: Theory and Methods, vol. 19 (North-Holland/Elsevier, Amsterdam, 2001), pp. 533–597. Handb. Stat.

    Google Scholar 

  68. P. Liardet, A Three-Dimensional Signed Small Ball Inequality. Discrépance sur le cercle. Primaths. I (Univ. Marseille, 1979)

    Google Scholar 

  69. M.A. Lifshits, Gaussian Random Functions. Mathematics and Its Applications (Dordrecht), vol. 322 (Kluwer Academic, Dordrecht, 1995)

    Google Scholar 

  70. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92. (Springer, Berlin-Heidelberg-New York, 1977)

    Google Scholar 

  71. L. Markhasin, Quasi-monte carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension. arXiv: abs/1201.2311v3 (2012)

    Google Scholar 

  72. J. Matoušek, Geometric Discrepancy. An Illustrated Guide. Algorithms and Combinatorics, vol. 18 (Springer, Berlin, 1999)

    Google Scholar 

  73. H.L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis. Regional Conference Series in Mathematics, vol. 84 (American Mathematical Society (AMS), Providence, RI, 1994)

    Google Scholar 

  74. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972). doi:10.2307/1995882

  75. E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Vol. II: Standard information for functionals. EMS Tracts in Mathematics, vol. 12 (European Mathematical Society (EMS), Zürich, 2010)

    Google Scholar 

  76. W. Ou, Irregularity of distributions and multiparameter A p weights. Uniform Distrib. Theory 5(2), 131–139 (2010)

    MATH  Google Scholar 

  77. M.C. Pereyra, Lecture Notes on Dyadic Harmonic Analysis (American Mathematical Society (AMS), Providence, RI, 2001). doi:10.1090/conm/289

  78. J. Pipher, Bounded double square functions. Ann. Inst. Fourier 36(2), 69–82 (1986). doi:10.5802/aif.1048

  79. G. Pólya, How to Solve It. A New Aspect of Mathematical Method. Reprint of the 2nd edn. Princeton Science Library (Princeton University Press, Princeton, NJ, 1988), p. 253

    Google Scholar 

  80. F. Riesz, Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung. Math. Zs. 2(3–4), 312–315 (1918). doi:10.1007/BF01199414

  81. K.F. Roth, On irregularities of distribution. Mathematika 1, 73–79 (1954). doi:10.1112/S0025579300000541

  82. K.F. Roth, On irregularities of distribution. II. Commun. Pure Appl. Math. 29(6), 749–754 (1976). doi:10.1002/cpa.3160290614

  83. K.F. Roth, On irregularities of distribution. III. Acta Arith. 35, 373–384 (1979)

    MATH  Google Scholar 

  84. K.F. Roth, On irregularities of distribution. IV. Acta Arith. 37, 67–75 (1980)

    MATH  Google Scholar 

  85. K.F. Roth, On a theorem of Beck. Glasgow Math. J. 27, 195–201 (1985). doi:10.1017/S0017089500006182

  86. W.M. Schmidt, Irregularities of distribution. Q. J. Math. Oxford II. Ser. 19, 181–191 (1968). doi:10.1093/qmath/19.1.181

  87. W.M. Schmidt, Irregularities of distribution. II. Trans. Am. Math. Soc. 136, 347–360 (1969). doi:10.2307/1994719

  88. W.M. Schmidt, Irregularities of distribution. III. Pacific J. Math. 29, 225–234 (1969). doi:10.2140/pjm.1969.29.225

  89. W.M. Schmidt, Irregularities of distribution. IV. Invent. Math. 7, 55–82 (1969). doi:10.1007/BF01418774

  90. W.M. Schmidt, Irregularities of distribution. V. Proc. Am. Math. Soc. 25, 608–614 (1970). doi:10.2307/2036653

  91. W.M. Schmidt, Irregularities of distribution. VI. Compos. Math. 24, 63–74 (1972)

    MATH  Google Scholar 

  92. W.M. Schmidt, Irregularities of distribution. VII. Acta Arith. 21, 45–50 (1972)

    MATH  Google Scholar 

  93. W.M. Schmidt, Irregularities of distribution. VIII. Trans. Am. Math. Soc. 198, 1–22 (1974). doi:10.2307/1996744

  94. W.M. Schmidt, Irregularities of distribution. IX. Acta Arith. 27, 385–396 (1975)

    MATH  Google Scholar 

  95. W.M. Schmidt, Irregularities of Distribution. X. (Academic Press, New York, 1977)

    Google Scholar 

  96. S. Sidon, Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourierreihen mit Lücken. Math. Ann. 97, 675–676 (1927). doi:10.1007/BF01447888

  97. S. Sidon, Ein Satz über trigonometrische Polynome mit Lücken und seine Anwendung in der Theorie der Fourier-Reihen. J. Reine Angew. Math. 163, 251–252 (1930). doi:10.1515/crll.1930.163.251

  98. M.M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25–49 (2006). doi:10.1515/CRELLE.2006.085

  99. M.M. Skriganov, private communication, Palo Alto, CA (2008)

    Google Scholar 

  100. I.M. Sobol, Multidimensional Quadrature Formulas and Haar Functions. (Biblioteka Prikladnogo Analiza i Vychislitel’noĭ Matematiki. Izdat. ‘Nauka’, FizMatLit., Moscow, 1969), p. 288

    Google Scholar 

  101. E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series, vol. 43 (Princeton University Press, Princeton, NJ, 1993), p. 695

    Google Scholar 

  102. M. Talagrand, The small ball problem for the Brownian sheet. Ann. Probab. 22(3), 1331–1354 (1994). doi:10.1214/aop/1176988605

  103. V.N. Temlyakov, Approximation of periodic functions of several variables with bounded mixed difference. Math. USSR Sb. 41, 53–66 (1982). doi:10.1070/SM1982v041n01ABEH002220

  104. V.N. Temlyakov, Approximation of Functions with a Bounded Mixed Derivative. Transl. from the Russian by H. H. McFaden. Proceedings of the Steklov Institute of Mathematics, vol. 1 (American Mathematical Society (AMS), Providence, RI, 1989), p. 121

    Google Scholar 

  105. V.N. Temlyakov, Approximation of Periodic Functions. Computational Mathematics and Analysis Series (Nova Science Publishers, Commack, NY, 1993), p. 419

    Google Scholar 

  106. V.N. Temlyakov, An inequality for trigonometric polynomials and its application for estimating the entropy numbers. J. Complexity 11(2), 293–307 (1995). doi:10.1006/jcom.1995.1012

  107. V.N. Temlyakov, Some inequalities for multivariate Haar polynomials. East J. Approx. 1(1), 61–72 (1995)

    MathSciNet  MATH  Google Scholar 

  108. V.N. Temlyakov, An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths. East J. Approx. 2(2), 253–262 (1996)

    MathSciNet  MATH  Google Scholar 

  109. V.N. Temlyakov, On two problems in the multivariate approximation. East J. Approx. 4(4), 505–514 (1998)

    MathSciNet  MATH  Google Scholar 

  110. V.N. Temlyakov, Cubature formulas, discrepancy, and nonlinear approximation. J. Complexity 19(3), 352–391 (2003). doi:10.1016/S0885-064X(02)00025-0

  111. H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. EMS Tracts in Mathematics, vol. 11 (European Mathematical Society (EMS), Zürich, 2010), p. 296. doi:10.4171/085

  112. H. Triebel, Numerical integration and discrepancy, a new approach. Math. Nachr. 283(1), 139–159 (2010). doi:10.1002/mana.200910842

  113. T. van Aardenne-Ehrenfest, Proof of the impossibility of a just distribution of an infinite sequence of points over an interval. Proc. Kon. Ned. Akad. v. Wetensch. 48, 266–271 (1945)

    MATH  Google Scholar 

  114. T. van Aardenne-Ehrenfest, On the impossibility of a just distribution. Proc. Nederl. Akad. Wetensch. Amsterdam 52, 734–739 (1949)

    MATH  Google Scholar 

  115. J.G. van der Corput, Verteilungsfunktionen. I. Proc. Akad. Wetensch. Amsterdam 38, 813–821 (1935)

    Google Scholar 

  116. J.G. van der Corput, Verteilungsfunktionen. II. Proc. Akad. Wetensch. Amsterdam 38, 1058–1066 (1935)

    Google Scholar 

  117. R.R. Varshamov, The evaluation of signals in codes with correction of errors. Dokl. Akad. Nauk SSSR 117, 739–741 (1957)

    MathSciNet  MATH  Google Scholar 

  118. G. Wang, Sharp square-function inequalities for conditionally symmetric martingales. Trans. Am. Math. Soc. 328(1), 393–419 (1991). doi:10.2307/2001887

  119. A. Zygmund, Trigonometric Series. Volumes I and II Combined. With a foreword by Robert Fefferman. 3rd edn. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 2002), p. 364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Bilyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bilyk, D. (2014). Roth’s Orthogonal Function Method in Discrepancy Theory and Some New Connections. In: Chen, W., Srivastav, A., Travaglini, G. (eds) A Panorama of Discrepancy Theory. Lecture Notes in Mathematics, vol 2107. Springer, Cham. https://doi.org/10.1007/978-3-319-04696-9_2

Download citation

Publish with us

Policies and ethics