Skip to main content

Upper Bounds in Classical Discrepancy Theory

  • Chapter
  • First Online:
A Panorama of Discrepancy Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2107))

Abstract

We discuss some of the ideas behind the study of upper bound questions in classical discrepancy theory. The many ideas involved come from diverse areas of mathematics and include diophantine approximation, probability theory, number theory and various forms of Fourier analysis. We illustrate these ideas by largely restricting our discussion to two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It was put to the first author by a rather preposterous engineering colleague many years ago that this could be achieved easily by a square lattice in the obvious way. Not quite the case, as an obvious way would be far from so to this colleague.

  2. 2.

    For those readers not familiar with the theory of diophantine approximation, just take any quadratic irrational like \(\sqrt{2}\) or \(\sqrt{3}\).

  3. 3.

    In their paper, Halton and Zaremba have an exact expression for the integral under study.

  4. 4.

    This is not the case if we wish to study Theorem 10 for k > 2.

  5. 5.

    Note that the set \(\mathcal{Q}_{h}\) here is different from that in the last section. However, since we are working with rectangles inside [0, 1) × [0, 2h), our statements here concerning \(\mathcal{Q}_{h}\) remain valid for the set \(\mathcal{Q}_{h}\) defined in the last section.

  6. 6.

    Simply imagine that we use Fourier analysis but with the Walsh functions replacing the exponential functions.

  7. 7.

    Here we somewhat abuse notation, as t clearly has more coordinates than p. In the sequel, W l (t) is really W l (0 ⊕t), notation abused again.

  8. 8.

    The assumption that p ≥ k − 1 cannot be relaxed, as noted by Chen [9].

References

  1. J. Beck, W.W.L. Chen, Note on irregularities of distribution. II. Proc. Lond. Math. Soc. III. Ser. 61(2), 251–272 (1990). doi:10.1112/plms/s3-61.2.251

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Beck, W.W.L. Chen, Irregularities of point distribution relative to convex polygons. III. J. Lond. Math. Soc. II. Ser. 56(2), 222–230 (1997). doi:10.1112/S0024610797005267

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Beck, Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Combinatorica 1, 319–325 (1981). doi:10.1007/BF02579452

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Beck, Irregularities of distribution. I. Acta Math. 159, 1–49 (1987). doi:10.1007/BF02392553

    MATH  Google Scholar 

  5. J. Beck, W.W.L. Chen, Irregularities of Distribution. Cambridge Tracts in Mathematics, vol. 89 (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  6. D. Bilyk, M.T. Lacey, On the small ball inequality in three dimensions. Duke Math. J. 143(1), 81–115 (2008). doi:10.1215/00127094-2008-016

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Bilyk, M.T. Lacey, A. Vagharshakyan, On the small ball inequality in all dimensions. J. Funct. Anal. 254(9), 2470–2502 (2008). doi:10.1016/j.jfa.2007.09.010

    Article  MathSciNet  MATH  Google Scholar 

  8. W.W.L. Chen, On irregularities of distribution. Mathematika 27, 153–170 (1980). doi:10.1112/S0025579300010044

    Article  MathSciNet  MATH  Google Scholar 

  9. W.W.L. Chen, On irregularities of distribution. II. Q. J. Math. Oxf. II. Ser. 34, 257–279 (1983). doi:10.1093/qmath/34.3.257

    Article  MATH  Google Scholar 

  10. W.W.L. Chen, Fourier techniques in the theory of irregularities of point distribution, in Fourier Analysis and Convexity, ed. by L. Brandolini, L. Colzani, A. Iosevich, G. Travaglini, Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, MA, 2004), pp. 59–82

    Google Scholar 

  11. W.W.L. Chen, M.M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution. J. Reine Angew. Math. 545, 67–95 (2002). doi:10.1515/crll.2002.037

    MathSciNet  MATH  Google Scholar 

  12. W.W.L. Chen, G. Travaglini, Discrepancy with respect to convex polygons. J. Complexity 23(4–6), 662–672 (2007). doi:10.1016/j.jco.2007.03.006

    Article  MathSciNet  MATH  Google Scholar 

  13. W.W.L. Chen, M.M. Skriganov, Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution, in Diophantine Approximation: Festschrift for Wolfgang Schmidt, ed. by H.P. Schlickewei, K. Schmidt, R.F. Tichy, Developments in Mathematics, vol. 16 (Springer, Wien, 2008), pp. 141–159. doi:10.1007/978-3-211-74280-8_7

  14. W.W.L. Chen, G. Travaglini, Deterministic and probabilistic discrepancies. Ark. Mat. 47(2), 273–293 (2009). doi:10.1007/s11512-008-0091-z

    Article  MathSciNet  Google Scholar 

  15. H. Davenport, Note on irregularities of distribution. Mathematika Lond. 3, 131–135 (1956). doi:10.1112/S0025579300001807

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Faure, Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41, 337–351 (1982)

    MathSciNet  MATH  Google Scholar 

  17. N.J. Fine, On the Walsh functions. Trans. Am. Math. Soc. 65, 372–414 (1949). doi:10.2307/1990619

    Article  MATH  Google Scholar 

  18. G. Halász, On Roth’s method in the theory of irregularities of point distributions, in Recent Progress in Analytic Number Theory, vol. 2, ed. by H. Halberstam, C. Hooley, vol. 2 (Academic Press, London, 1981), pp. 79–94

    Google Scholar 

  19. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.H. Halton, S.K. Zaremba, The extreme and L 2 discrepancies of some plane sets. Monatsh. Math. 73, 316–328 (1969). doi:10.1007/BF01298982

    Article  MathSciNet  MATH  Google Scholar 

  21. G.H. Hardy, J.E. Littlewood, Some problems of diophantine approximation: The lattice-points of a right-angled triangle I. Proc. London Math. Soc. (2) 20(1), 15–36 (1921). doi:10.1112/plms/s2-20.1.15

    Google Scholar 

  22. G.H. Hardy, J.E. Littlewood, Some problems of diophantine approximation: The lattice-points of a right-angled triangle II. Abh. Math. Sem. Hamburg 1(1), 212–249 (1921)

    Google Scholar 

  23. S.V. Konyagin, M.M. Skriganov, A.V. Sobolev, On a lattice point problem arising in the spectral analysis of periodic operators. Mathematika 50(1–2), 87–98 (2003). doi:10.1112/S0025579300014819

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lerch, Question 1547. L’Intermediaire Math. 11, 144–145 (1904)

    Google Scholar 

  25. R. Lidl, H. Niederreiter, Finite Fields. Foreword by P. M. Cohn. (Addison-Wesley, Reading, 1983)

    Google Scholar 

  26. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes. Parts I, II. (North-Holland, Amsterdam, 1977)

    Google Scholar 

  27. D. Pollard, Convergence of Stochastic Processes. (Springer, New York, 1984)

    Google Scholar 

  28. J.J. Price, Certain groups of orthonormal step functions. Can. J. Math. 9, 413–425 (1957). doi:10.4153/CJM-1957-049-x

    Article  MATH  Google Scholar 

  29. K.F. Roth, On irregularities of distribution. Mathematika 1, 73–79 (1954). doi:10.1112/S0025579300000541

    Article  MathSciNet  MATH  Google Scholar 

  30. K.F. Roth, On irregularities of distribution. III. Acta Arith. 35, 373–384 (1979)

    MATH  Google Scholar 

  31. K.F. Roth, On irregularities of distribution. IV. Acta Arith. 37, 67–75 (1980)

    MATH  Google Scholar 

  32. W.M. Schmidt, Irregularities of distribution. VII. Acta Arith. 21, 45–50 (1972)

    MATH  Google Scholar 

  33. M.M. Skriganov, Constructions of uniform distributions in terms of geometry of numbers. St. Petersbg. Math. J. 6(3), 635–664 (1995). Translation from Algebra i Analiz 6(3), 200–230 (1994)

    Google Scholar 

  34. M.M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions. J. Reine Angew. Math. 600, 25–49 (2006). doi:10.1515/CRELLE.2006.085

    MathSciNet  MATH  Google Scholar 

  35. T. van Aardenne-Ehrenfest, Proof of the impossibility of a just distribution of an infinite sequence of points over an interval. Proc. Kon. Ned. Akad. v. Wetensch. 48, 266–271 (1945)

    MATH  Google Scholar 

  36. T. van Aardenne-Ehrenfest, On the impossibility of a just distribution. Proc. Kon. Ned. Akad. v. Wetensch. 52, 734–739 (1949)

    MATH  Google Scholar 

  37. J.G. van der Corput, Verteilungsfunktionen. I. Mitt. Proc. Kon. Ned. Akad. v. Wetensch. 38, 813–821 (1935)

    Google Scholar 

  38. J.G. van der Corput, Verteilungsfunktionen. II. Proc. Kon. Ned. Akad. v. Wetensch. 38, 1058–1066 (1935)

    Google Scholar 

Download references

Acknowledgements

The research of the second author has been supported by RFFI Project No. 08-01-00182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, W., Skriganov, M. (2014). Upper Bounds in Classical Discrepancy Theory. In: Chen, W., Srivastav, A., Travaglini, G. (eds) A Panorama of Discrepancy Theory. Lecture Notes in Mathematics, vol 2107. Springer, Cham. https://doi.org/10.1007/978-3-319-04696-9_1

Download citation

Publish with us

Policies and ethics