Skip to main content

Benthic Foraminifera, Food Supply, and Carbonate Saturation Across the Cretaceous–Palaeogene Boundary: Southern Ocean Site 690

  • Conference paper
  • First Online:
STRATI 2013

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 192 Accesses

Abstract

The specific mechanisms causing extinction and faunal turnover after the impact of an asteroid at the Cretaceous–Palaeogene (K–Pg) boundary, and the palaeogeographical variability of the biotic response, are not well understood. In order to evaluate causes of extinction and compare the biotic turnover of deep-sea benthic foraminifera at high southern latitudes with that at globally distributed sites, we analysed benthic foraminiferal assemblages at Southern Ocean ODP Site 690 on Maud Rise, Antarctica. Proxies for export productivity and the species composition of benthic assemblages indicate that the food supply to the seafloor did not change significantly, but diversity and evenness decreased for several hundred thousand years. This transient assemblage change may have been caused by the extinction of pelagic calcifiers, either directly because of the changed nature of the organic flux, or indirectly, because the sharp decline in pelagic carbonate flux to the deep-sea floor caused carbonate oversaturation of deep waters, leading to an increased abundance of large, thick-walled and heavily calcified species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alegret, L., Thomas, E., & Lohmann, K. C. (2012). End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences,109(3), 728–732.

    Article  Google Scholar 

  • Bown, P. (2005). Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology,33, 653–656.

    Article  Google Scholar 

  • Bremer, M. L., & Lohmann, G. P. (1982). Evidence for primary control of the distribution of certain Atlantic Ocean benthonic foraminifera by degree of carbonate saturation. Deep-Sea Research,29, 987–998.

    Article  Google Scholar 

  • Caldeira, K., & Rampino, M. R. (1993). Aftermath of the end-Cretaceous mass extinction: Possible biogeochemical stabilization of the carbon cycle and climate. Paleoceanography,8, 515–525.

    Article  Google Scholar 

  • Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., et al. (2013). Is ocean acidification an open-ocean syndrome? understanding anthropogenic impacts on seawater. Estuaries and Coasts,36, 221–236.

    Article  Google Scholar 

  • Elliot, D. H., Askin, R. A., Kyte, F. T., & Zinsmeister, W. J. (1994). Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: Implications for the K-T event. Geology,22, 675–678.

    Article  Google Scholar 

  • Fütterer, D. K. (1990). Distribution of calcareous dinoflagellates at the Cretaceous–Tertiary boundary of Queen Maud Rise, Eastern Weddell Sea, Antarctica (ODP Leg 113). In P. F. Barker & J. P. Kennett et al., Proceedings of ODP, Science Results (pp. 533–548). 113, College Station: TX (Ocean Drilling Program).

    Google Scholar 

  • Hildebrand-Habel, T., & Streng, M. (2003). Calcareous dinoflagellate associations and Maastrichtian-Tertiary climatic change in a high latitude core (ODP Hole 689B, Maud Rise, Weddell Sea). Palaeogeography, Palaeoclimatology, Palaeoecology,197, 293–321.

    Article  Google Scholar 

  • Hull P. M., & Norris R. D. (2011). Diverse patterns of ocean export productivity change across the Cretaceous–Paleogene boundary: new insights from biogenic barium. Paleoceanography, 26(3), PA3205. doi: 10.1029/2010PA002082.

    Article  Google Scholar 

  • Jiang, S., Bralower, T. J., Patzkowsky, M. E., Kump, L. R., & Schueth, J. D. (2010). Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary. Nature Geoscience,. doi:10.1038/NGEO775.

    Article  Google Scholar 

  • Liu, C., & Olsson, R. K. (1992). Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. Journal of Foraminiferal Research,4, 328–346.

    Article  Google Scholar 

  • Ridgwell, A. (2005). A Mid Mesozoic revolution in the regulation of ocean chemistry. Marine Geology,217, 339–357.

    Article  Google Scholar 

  • Thomas, E. (1990). Late Cretaceous–early Eocene mass extinctions in the deep sea. Geological Society of America Special Publication,247, 481–495.

    Article  Google Scholar 

  • Zeebe, R. R., & Westbroek, P. (2003). A simple model for the saturation state of the ocean: the “Strangelove”, the “Neritan” and the “Cretan” Ocean. Geochemistry, Geophysics, Geosystems,4(12), 1104. doi:10.1029/2003GC000538.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Consolider CGL 2007-63724 and CGL2011-23077 (Spanish Ministry of Science and Innovation-FEDER). ET acknowledges funding by the Leverhulme Trust (UK) and NSF OCE-720049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laia Alegret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alegret, L., Thomas, E. (2014). Benthic Foraminifera, Food Supply, and Carbonate Saturation Across the Cretaceous–Palaeogene Boundary: Southern Ocean Site 690. In: Rocha, R., Pais, J., Kullberg, J., Finney, S. (eds) STRATI 2013. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-04364-7_13

Download citation

Publish with us

Policies and ethics