Skip to main content

Towards the Development and Validation of a Smartphone-Based Pupillometer for Neuro-Ophthalmological Diseases Screening

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2020)

Abstract

Pupillometry allows a quantitative measurement of PLR and has been mainly used to assess patient’s consciousness and vision function. The analysis of pupil light reflex (PLR) has been showing a renewed interest since the discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs), that are sensitive to the blue light, as they have an important role in pupil response to a stimulus. Some researches have studied pupillometry, particularly chromatic pupillometry that uses blue and red stimuli, to be a screening tool for neuro-ophthalmological diseases. Automated pupillometers have been widely used, however they are either not portable or expensive, reason why this technique has been mainly used in academic research. A smartphone-based pupillometer could be a promising equipment to overcome these limitations and to be a widespread screening tool, due to its low price, portability and accessibility. This work shows our latest advances towards the development and validation of an Android system for pupillometry measurements. Pupillometric data was collected with the smartphone application in a group of five healthy individuals and used to test our proposed data processing algorithms. These tests showed that the data processing methods that we are proposing, although promising, did not behave as expected, indicating that new approaches, better validations and corrections should be made in the future to get a stable software for pupil detection. Nevertheless, preliminary pupillometric data indicate that this system has the potential to work as an inexpensive, easy-to-use and portable pupillometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpern, M., Campbell, F.W.: The spectral sensitivity of the consensual light reflex. J. Physiol. 164(3), 478–507 (1962). https://doi.org/10.1113/jphysiol.1962.sp007033

    Article  Google Scholar 

  2. Barrionuevo, P.A., Nicandro, N., McAnany, J.J., Zele, A.J., Gamlin, P., Cao, D.: Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. Invest. Ophthalmol. Vis. Sci. (2014). https://doi.org/10.1167/iovs.13-13252

    Article  Google Scholar 

  3. Dacey, D.M., et al.: Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature (2005). https://doi.org/10.1038/nature03387

    Article  Google Scholar 

  4. de Rodez Benavent, S.A., et al.: Fatigue and cognition: pupillary responses to problem-solving in early multiple sclerosis patients. Brain Behav. 7(7), 1–12 (2017). https://doi.org/10.1002/brb3.717

    Article  Google Scholar 

  5. Feigl, B., Mattes, D., Thomas, R., Zele, A.J.: Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma, pp. 4362–4367 (2011). https://doi.org/10.1167/iovs.10-7069

  6. Fotiou, D.F., Stergiou, V., Tsiptsios, D., Lithari, C., Nakou, M., Karlovasitou, A.: Cholinergic deficiency in Alzheimer’s and Parkinson’s disease: evaluation with pupillometry. Int. J. Psychophysiol. 73(2), 143–149 (2009). https://doi.org/10.1016/j.ijpsycho.2009.01.011

  7. Fuhl, W., Santini, T.C., Kuebler, T., Kasneci, E.: ElSe: ellipse selection for robust pupil detection in real-world environments (2015). https://doi.org/10.1145/2857491.2857505, http://arxiv.org/abs/1511.06575

  8. Fuhl, W., Tonsen, M., Bulling, A., Kasneci, E.: Pupil detection for head-mounted eye tracking in the wild: an evaluation of the state of the art. Mach. Vis. Appl. 27(8), 1275–1288 (2016). https://doi.org/10.1007/s00138-016-0776-4, http://arxiv.org/abs/1405.0006, http://link.springer.com/10.1007/s00138-016-0776-4

  9. Gamlin, P.D., McDougal, D.H., Pokorny, J., Smith, V.C., Yau, K.W., Dacey, D.M.: Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis. Res. 47(7), 946–954 (2007). https://doi.org/10.1016/j.visres.2006.12.015

    Article  Google Scholar 

  10. Giza, E., et al.: Pupillometry and 123I-DaTSCAN imaging in Parkinson’s disease: a comparison study. Int. J. Neurosci. 122(1), 26–34 (2012). https://doi.org/10.3109/00207454.2011.619285

    Article  Google Scholar 

  11. Giza, E., Fotiou, D., Bostantjopoulou, S., Katsarou, Z., Karlovasitou, A.: Pupil light reflex in Parkinson’s disease: evaluation with pupillometry. Int. J. Neurosci. 121(1), 37–43 (2011). https://doi.org/10.3109/00207454.2010.526730, http://www.tandfonline.com/doi/full/10.3109/00207454.2010.526730

  12. Gracitelli, C.P.B., et al.: A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest. Ophthalmol. Vis. Sci. 55(12), 7997–8005 (2014). https://doi.org/10.1167/iovs.14-15146

    Article  Google Scholar 

  13. Granholm, E.L., et al.: Pupillary responses as a biomarker of early risk for Alzheimer’s disease. J. Alzheimer’s Dis. 56(4), 1419–1428 (2017). https://doi.org/10.3233/JAD-161078, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808562/

  14. Hassan, R., Kasim, S., Jafery, W.A.Z.W.C., Shah, Z.A.: Image enhancement technique at different distance for Iris recognition. Int. J. Adv. Sci. Eng. Inf. Technol. 7(4–2 Special Issue), 1510–1515 (2017)

    Google Scholar 

  15. Hattar, S., Liao, H.W., Takao, M., Berson, D.M., Yau, K.W.: Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557), 1065–1070 (2002). https://doi.org/10.1126/science.1069609

    Article  Google Scholar 

  16. Kardon, R.: Regulation of light through the pupil (Chap. 26). In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 11th edn. pp. 502–525. Elsevier, Mosby, St Louis (2011)

    Google Scholar 

  17. Kardon, R., Anderson, S.C., Damarjian, T.G., Grace, E.M., Stone, E., Kawasaki, A.: Chromatic pupil responses. Preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 116(8), 1564–1573 (2009). https://doi.org/10.1016/j.ophtha.2009.02.007

  18. Kelbsch, C., et al.: Standards in pupillography. Front. Neurol. 10 (2019). https://doi.org/10.3389/fneur.2019.00129, https://www.frontiersin.org/article/10.3389/fneur.2019.00129/full

  19. Kim, T.H., Youn, J.I.: Development of a smartphone-based pupillometer. J. Opt. Soc. Korea 17(3), 249–254 (2013). https://doi.org/10.3807/JOSK.2013.17.3.249

    Article  Google Scholar 

  20. Lowenstein, O., Loewenfel, I.E.: Electronic pupillography; a new instrument and some clinical applications. A.M.A. Arch. Ophthalmol. 59(3), 352 (1958). https://doi.org/10.1001/archopht.1958.00940040058007

  21. Lucas, R.J., Douglas, R.H., Foster, R.G.: Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4(6), 621–626 (2001)

    Article  Google Scholar 

  22. McAnany, J.J., Smith, B.M., Garland, A., Kagen, S.L.: IPhone-based pupillometry: a novel approach for assessing the pupillary light reflex. Optom. Vis. Sci. 95(10), 953–958 (2018). https://doi.org/10.1097/OPX.0000000000001289, http://insights.ovid.com/crossref?an=00006324-201810000-00007

  23. Najjar, R.P., et al.: Pupillary responses to full-field chromatic stimuli are reduced in patients with early-stage primary open-angle glaucoma. Ophthalmology 125(9), 1362–1371 (2018). https://doi.org/10.1016/j.ophtha.2018.02.024

  24. Park, J.C., McAnany, J.J.: Effect of stimulus size and luminance on the rod-, cone-, and melanopsin-mediated pupillary light reflex. J. Vis. 15(3), 1–13 (2015). https://doi.org/10.1167/15.3.13

    Article  Google Scholar 

  25. Park, J.C., Moura, A.L., Raza, A.S., Rhee, D.W., Kardon, R.H., Hood, D.C.: Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest. Ophthalmol. Vis. Sci. 52(9), 6624 (2011). https://doi.org/10.1167/iovs.11-7586

  26. Rukmini, A.V., Milea, D., Gooley, J.J.: Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Front. Neurol. 10(FEB), 1–20 (2019). https://doi.org/10.3389/fneur.2019.00076

  27. Rukmini, A.V., et al.: Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology 122(9), 1777–1785 (2015). https://doi.org/10.1016/j.ophtha.2015.06.002

  28. Shin, Y.D., Bae, J.H., Kwon, E.J., Kim, H.T., Lee, T.S., Choi, Y.J.: Assessment of pupillary light reflex using a smartphone application. Exp. Ther. Med. 12(2), 720–724 (2016). https://doi.org/10.3892/etm.2016.3379, https://www.spandidos-publications.com/10.3892/etm.2016.3379

  29. Sousa, A.I., et al.: Development of a smartphone-based pupillometer for neuro-ophthalmological diseases screening. In: BIODEVICES 2020–13th International Conference on Biomedical Electronics and Devices, Proceedings; Part of 13th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2020 (Biostec), pp. 50–56 (2020). https://doi.org/10.5220/0008962600500056

  30. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-511–I-518. IEEE Computer Society (2001). https://doi.org/10.1109/CVPR.2001.990517, http://ieeexplore.ieee.org/document/990517/

  31. Wang, C.A., McInnis, H., Brien, D.C., Pari, G., Munoz, D.P.: Disruption of pupil size modulation correlates with voluntary motor preparation deficits in Parkinson’s disease. Neuropsychologia 80, 176–184 (2016). https://doi.org/10.1016/j.neuropsychologia.2015.11.019, https://linkinghub.elsevier.com/retrieve/pii/S0028393215302347

Download references

Acknowledgments

This work is funded by National Funds through FCT - Portuguese Foundation for Science and Technology and Compta S.A. under the PhD grant with reference PD/BDE/135002/2017. A special acknowledgment to Compta S.A. team and to the Ophthalmology Department of Hospital Santa Maria for all the support given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Isabel Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sousa, A.I., Neves, C.M., Pinto, L.A., Vieira, P. (2021). Towards the Development and Validation of a Smartphone-Based Pupillometer for Neuro-Ophthalmological Diseases Screening. In: Ye, X., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2020. Communications in Computer and Information Science, vol 1400. Springer, Cham. https://doi.org/10.1007/978-3-030-72379-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72379-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72378-1

  • Online ISBN: 978-3-030-72379-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics