Skip to main content

Implementation of Real Data for Financial Market Simulation Using Clustering, Deep Learning, and Artificial Financial Market

  • Conference paper
  • First Online:
PRIMA 2020: Principles and Practice of Multi-Agent Systems (PRIMA 2020)

Abstract

In this paper, we propose a new scheme for implementing the machine-learned trader-agent model in financial market simulations based on real data. The implementation is only focused on the high-frequency-trader market-making (HFT-MM) strategy. We first extract order data of HFT-MM traders from the real order data by clustering. Then, using the data, we build a deep learning model. Using the model, we build an HFT-MM trader model for simulations. In the simulations, we compared our new model and a traditional HFT-MM trader model in terms of divergence of the ordering behaviors. Our new trader model outperforms the traditional model. Moreover, we also found an obstacle of combination of data and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually, due to the limitation of transactions per one VS, traders use multiple VS.

References

  1. Avellaneda, M., Stoikov, S.: High-frequency trading in a limit order book. Quant. Finance 8(3), 217–224 (2008). https://doi.org/10.1080/14697680701381228

    Article  MathSciNet  MATH  Google Scholar 

  2. Chiarella, C., Iori, G.: A simulation analysis of the microstructure of double auction markets. Quant. Finance 2(5), 346–353 (2002). https://doi.org/10.1088/1469-7688/2/5/303

    Article  MATH  Google Scholar 

  3. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finance 1(2), 223–236 (2001)

    Article  Google Scholar 

  4. Dixon, M.F., Polson, N.G., Sokolov, V.O.: Deep learning for spatio-temporal modeling: dynamic traffic flows and high frequency trading. Quant. Finance 19(4), 549–570 (2019)

    Article  MathSciNet  Google Scholar 

  5. Hirano, M., Izumi, K., Matsushima, H., Sakaji, H.: Comparing actual and simulated HFT traders’ behavior for agent design. J. Artif. Soc. Soc. Simul. 23(3), 6 (2020). https://doi.org/10.18564/jasss.4304. http://jasss.soc.surrey.ac.uk/23/3/6.html

  6. Hirano, M., Izumi, K., Sakaji, H., Shimada, T., Matsushima, H.: Impact assessments of the CAR regulation using artificial markets. Proc. Int. Workshop Artif. Market 2018, 43–58 (2018)

    Google Scholar 

  7. Hirano, M., Izumi, K., Shimada, T., Matsushima, H., Sakaji, H.: Impact analysis of financial regulation on multi-asset markets using artificial market simulations. J. Risk Financ. Manage. 13(4), 75 (2020). 10.3390/jrfm13040075. https://www.mdpi.com/1911-8074/13/4/75

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Hosaka, G.: Analysis of High-frequency Trading at Tokyo Stock Exchange (2014). https://www.jpx.co.jp/corporate/research-study/working-paper/tvdivq0000008q5y-att/JPX_working_paper_No.4.pdf

  10. Kercheval, A.N., Zhang, Y.: Modelling high-frequency limit order book dynamics with support vector machines. Quant. Finance 15(8), 1315–1329 (2015)

    Article  MathSciNet  Google Scholar 

  11. Kim, K.j.: Financial time series forecasting using support vector machines. Neurocomputing 55, 307–319 (2003)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, NeurIPS 2012, pp. 1097–1105 (2012)

    Google Scholar 

  13. Miyazaki, B., Izumi, K., Toriumi, F., Takahashi, R.: Change detection of orders in stock markets using a Gaussian mixture model. Intell. Syst. Account. Finance Manage. 21(3), 169–191 (2014)

    Article  Google Scholar 

  14. Mizuta, T.: An Agent-based Model for Designing a Financial Market that Works Well (2019). http://arxiv.org/abs/1906.06000

  15. Mizuta, T., et al.: Effects of price regulations and dark pools on financial market stability: an investigation by multiagent simulations. Intell. Syst. Account. Finance Manage. 23(1–2), 97–120 (2016). https://doi.org/10.1002/isaf.1374

    Article  Google Scholar 

  16. Nanex: Nanex - Market Crop Circle of The Day (2010). http://www.nanex.net/FlashCrash/CCircleDay.html

  17. Sirignano, J.A.: Deep learning for limit order books. Quant. Finance 19(4), 549–570 (2019)

    Article  MathSciNet  Google Scholar 

  18. Tashiro, D., Izumi, K.: Estimating stock orders using deep learning and high frequency data. In: Proceedings of the 31nd Annual Conference of the Japanese Society for Artificial, pp. 2D2-2 (2017). (in Japanese)

    Google Scholar 

  19. Tashiro, D., Matsushima, H., Izumi, K., Sakaji, H.: Encoding of high-frequency order information and prediction of short-term stock price by deep learning. Quant. Finance 19(9), 1499–1506 (2019)

    Article  MathSciNet  Google Scholar 

  20. Torii, T., et al.: PlhamJ (2019). https://github.com/plham/plhamJ

  21. Torii, T., Izumi, K., Yamada, K.: Shock transfer by arbitrage trading: analysis using multi-asset artificial market. Evol. Inst. Econ. Rev. 12(2), 395–412 (2015)

    Article  Google Scholar 

  22. Torii, T., Kamada, T., Izumi, K., Yamada, K.: Platform design for large-scale artificial market simulation and preliminary evaluation on the K computer. Artif. Life Robot. 22(3), 301–307 (2017)

    Article  Google Scholar 

  23. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Using deep learning to detect price change indications in financial markets. In: Proceedings of the 25th European Signal Processing Conference, pp. 2580–2584 (2017)

    Google Scholar 

  24. Uno, J., Goshima, K., Tobe, R.: Cluster analysis of trading behavior: an attempt to extract HFT. In: The 12th Annual Conference of Japanese Association of Behavioral Economics and Finance (2018). (in Japanese)

    Google Scholar 

  25. Wang, J., Sun, T., Liu, B., Cao, Y., Zhu, H.: CLVSA: a convolutional lstm based variational sequence-to-sequence model with attention for predicting trends of financial markets. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), pp. 3705–3711 (2019)

    Google Scholar 

Download references

Acknowledgement

We thank the Japan Exchange Group, Inc. for providing the data. This research was supported by MEXT via Exploratory Challenges on Post-K computer (study on multilayered multiscale space-time simulations for social and economic phenomena). This research also used the computational resources of the HPCI system provided by the Information Technology Center at The University of Tokyo, and the Joint Center for Advanced High Performance Computing (JCAHPC) through the HPCI System Research Project (Project ID: hp190150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hirano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirano, M., Matsushima, H., Izumi, K., Sakaji, H. (2021). Implementation of Real Data for Financial Market Simulation Using Clustering, Deep Learning, and Artificial Financial Market. In: Uchiya, T., Bai, Q., Marsá Maestre, I. (eds) PRIMA 2020: Principles and Practice of Multi-Agent Systems. PRIMA 2020. Lecture Notes in Computer Science(), vol 12568. Springer, Cham. https://doi.org/10.1007/978-3-030-69322-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69322-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69321-3

  • Online ISBN: 978-3-030-69322-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics