Skip to main content

Contactless Fall Detection for the Elderly

  • Chapter
  • First Online:
Contactless Human Activity Analysis

Abstract

Early fall detection imposes a challenge for preventing life-threatening conditions to the health in geriatrics. As per the World Health Organization, around that half of total elderly individuals fall every year, which is considered a major cause of death. Fall-down detection and prediction is an active research topic to track seniors who reside at home alone or under treatment in a hospital. With the advancement of pervasive sensing technology and artificial intelligence techniques, automatic and contactless fall detection is now possible via passive monitoring systems. However, such systems’ accuracy is not up to an admissible limit due to the context and ambient conditions. Among the two main categories of fall detection systems, such as wearable sensor-based and contactless sensor-based, security issues of wearable sensor-based detection systems make it unacceptable to researchers. Moreover, wearable sensors are required to be worn by the user for a longer period, making it undesirable by the users. As a result, throughout recent years, ambient and wireless sensor-based systems have been commonly used for fall detection. To define existing approaches for potential research directions, it is important to analyze the elderly fall detection system’s ongoing practices. This book chapter aims to provide a detailed overview of different existing methods/systems of fall detection based on contactless sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tinetti, M.E., Kumar, C.: The patient who falls:“it’s always a trade-off”. Jama 303(3), 258–266 (2010)

    Google Scholar 

  2. Islam, Z.Z., Tazwar, S.M., Islam, Z. Md., Serikawa, S., Ahad A.R. Md.: Automatic fall detection system of unsupervised elderly people using smartphone. In: 5th IIAE International Conference on Intelligent Systems and Image Processing, Hawaii, USA, (2017)

    Google Scholar 

  3. Hossain, T., Ahad, M.A.R., Inoue, S.: A method for sensor-based activity recognition in missing data scenario. Sens. 20(14), 3811 (2020)

    Google Scholar 

  4. Beard, J., Biggs, S., Bloom, D.E., Fried, L.P., Hogan, P.R., Kalache, A., Olshansky, S.J., et al.: Global population ageing: peril or promise? Technical report, Program on the Global Demography of Aging (2012)

    Google Scholar 

  5. Ayta, I.A., McKinlay, J.B., Krane, R.J.: The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences. BJU Int. 84(1), 50–56 (1999)

    Article  Google Scholar 

  6. Luque, R., Casilari, E., Morón, M-J., Redondo, G.: Comparison and characterization of android-based fall detection systems. Sensors 14(10), 18543–18574 (2014)

    Google Scholar 

  7. Day, L.: Falls in older people: risk factors and strategies for prevention, by sr lord, c sherrington, and hb menz, (pp. 249; a \$85.00). cambridge university press (private bag 31, port melbourne, vic 3207, australia) (2001). ISBN: 0-521-58964-9 (2003)

    Google Scholar 

  8. Stevens, J.A., Corso, P.S., Finkelstein, E.A., Miller, T.R.: The costs of fatal and non-fatal falls among older adults. Injury Prevent. 12(5):290–295 (2006)

    Google Scholar 

  9. Baraff, L.A., Penna, R.D., Williams, N., Sanders, A.: Practice guideline for the ed management of falls in community-dwelling elderly persons. Annals Emerg. Med. 30(4), 480–492 (1997)

    Google Scholar 

  10. Stevens , J.A., Sogolow, E.D.: Gender differences for non-fatal unintentional fall related injuries among older adults. Injury Prevent. 11(2), 115–119 (2005)

    Google Scholar 

  11. Baig, M.M., Afifi, S., GholamHosseini, H., Mirza, F.: A systematic review of wearable sensors and IoT-based monitoring applications for older adults—a focus on ageing population and independent living. 8 (2019)

    Google Scholar 

  12. Baig, M.M., Gholamhosseini, H., Connolly, M.J.: Falls risk assessment for hospitalised older adults: a combination of motion data and vital signs. Aging Clinical Exper. Res. 28(6), 1159–1168 (2016)

    Google Scholar 

  13. Al Nahian, M.J., Ghosh, T., Uddin, M.N., Islam, M.M., Mahmud, M., Kaiser, M.S.: Towards artificial intelligence driven emotion aware fall monitoring framework suitable for elderly people with neurological disorder. In: International Conference on Brain Informatics, pp. 275–286. Springer (2020)

    Google Scholar 

  14. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles and approaches. Neurocomputing 100, 144–152 (2013)

    Article  Google Scholar 

  15. Zhang, C., Tian, Y.: Rgb-d camera-based daily living activity recognition. J. Comput. Vision Image Proc. 2(4), 12 (2012)

    Google Scholar 

  16. Zitouni, M., Pan, Q., Brulin, D., Campo, E., et al.: Design of a smart sole with advanced fall detection algorithm. J. Sensor Technol. 9(04), 71 (2019)

    Article  Google Scholar 

  17. Thomas, S.S., Nathan, V., Zong, C., Soundarapandian, K., Shi, X., Jafari, R.: Biowatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE J. Biomed. Health Inform. 20(5), 1291–1300 (2015)

    Google Scholar 

  18. Wu, J., Li, H., Cheng, S., Lin, Z.: The promising future of healthcare services: when big data analytics meets wearable technology. Inform. Manag. 53(8), 1020–1033 (2016)

    Google Scholar 

  19. Narendrakumar, A.: Reliable energy efficient trust based data transmission for dynamic wireless sensor networks. In: 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), pp. 190–194. IEEE (2017)

    Google Scholar 

  20. Kamoi, H., Toyoda, K., Ohtsuki, T.: Fall detection using uhf passive rfid based on the neighborhood preservation principle. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

    Google Scholar 

  21. Kyriazakos, S., Mihaylov, M., Anggorojati, B., Mihovska, A., Craciunescu, R., Fratu, O., Prasad, R.: ewall: an intelligent caring home environment offering personalized context-aware applications based on advanced sensing. Wireless Personal Comm. 87(3), 1093–1111 (2016)

    Article  Google Scholar 

  22. Lee, W.K., Yoon, H., Park, K.S.: Smart ecg monitoring patch with built-in r-peak detection for long-term hrv analysis. Annals Biomed. Eng. 44(7), 2292–2301 (2016)

    Article  Google Scholar 

  23. Etemadi, M., Inan, O.T., Heller, J.A., Hersek, S., Klein, L., Roy, S.: A wearable patch to enable long-term monitoring of environmental, activity and hemodynamics variables. IEEE Trans. Biomed. Circuits Syst. 10(2), 280–288 (2015)

    Google Scholar 

  24. Chen, M., Ma, Y., Song, J., Lai, C.-F., Bin, H.: Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mobile Netw. Appl. 21(5), 825–845 (2016)

    Article  Google Scholar 

  25. Ghosh, A.M., Halder, D., Hossain, S.K.A.: Remote health monitoring system through iot. In: 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 921–926. IEEE (2016)

    Google Scholar 

  26. Balamurugan, S., Madhukanth, R., Prabhakaran, V.M., Shanker, R.G.K.: Internet of health: applying iot and big data to manage healthcare systems. Int. Res. J. Eng. Technol. 310, 732–735 (2016)

    Google Scholar 

  27. Anaya, L.H.S., Alsadoon, A., Costadopoulos, N., Prasad, P.W.C.: Ethical implications of user perceptions of wearable devices. Sci. Eng. Ethics 24(1), 1–28 (2018)

    Google Scholar 

  28. Sivathanu, B.: Adoption of internet of things (iot) based wearables for healthcare of older adults–a behavioural reasoning theory (brt) approach. J. Enabl. Technol. (2018)

    Google Scholar 

  29. Adapa, A., Nah, F.F.H., Hall, R.H., Siau, K., Smith, S.N.: Factors influencing the adoption of smart wearable devices. Int. J. Human Comput. Inter. 34(5), 399–409 (2018)

    Google Scholar 

  30. Habibipour, A., Padyab, A., Ståhlbröst, A.: Social, ethical and ecological issues in wearable technologies. Twenty Fifth Am. Confer. Inform. Syst. Cancun 2019, 1–10 (2019)

    Google Scholar 

  31. Feng, Q., Gao, C., Wang, L., Zhao, Y., Song, T., Li, Q.: Spatio-temporal fall event detection in complex scenes using attention guided lstm. Pattern Recogn. Lett. 130, 242–249 (2020)

    Article  Google Scholar 

  32. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  33. Kong, Y., Huang, J., Huang, S., Wei, Z., Wang, S.: Learning spatiotemporal representations for human fall detection in surveillance video. J. Visual Comm. Image Represent. 59, 215–230 (2019)

    Article  Google Scholar 

  34. Ahad, M.A.R.: Motion history images for action recognition and understanding. Springer Science & Business Media (2012)

    Google Scholar 

  35. Ahad, M.A.R.: Computer vision and action recognition: a guide for image processing and computer vision community for action understanding, vol. 5. Springer Science & Business Media (2011)

    Google Scholar 

  36. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Machine Vision Appl. 23(2), 255–281 (2012)

    Google Scholar 

  37. Ma, X., Wang, H., Xue, B., Zhou, M., Ji, B., Li, Y.: Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J. Biomed. Health Inform. 18(6), 1915–1922 (2014)

    Article  Google Scholar 

  38. Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)

    Article  Google Scholar 

  39. Noury, N., Rumeau, P., Bourke, A.K., ÓLaighin, G., Lundy, J.E.: A proposal for the classification and evaluation of fall detectors. Irbm 29(6), 340–349 (2008)

    Google Scholar 

  40. Fan, Y., Levine, M.D., Wen, G., Qiu, S.: A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing 260, 43–58 (2017)

    Google Scholar 

  41. Goudelis, G., Tsatiris, G., Karpouzis, K., Kollias, S.: Fall detection using history triple features. In: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, pp. 1–7 (2015)

    Google Scholar 

  42. Yun, Y., Gu, I.Y.H.: Human fall detection in videos via boosting and fusing statistical features of appearance, shape and motion dynamics on riemannian manifolds with applications to assisted living. Comput. Vision Image Underst. 148, 111–122 (2016)

    Google Scholar 

  43. Cippitelli, E., Fioranelli, F., Gambi, E., Spinsante, S.: Radar and rgb-depth sensors for fall detection: a review. IEEE Sens. J. 17(12), 3585–3604 (2017)

    Article  Google Scholar 

  44. Kong, X., Meng, Z., Nojiri, N., Iwahori, Y., Meng, L., Tomiyama, H.: A hog-svm based fall detection iot system for elderly persons using deep sensor. Procedia Comput. Sci. 147, 276–282 (2019)

    Article  Google Scholar 

  45. Khan, M.S., Yu, M., Feng, P., Wang, L., Chambers, J.: An unsupervised acoustic fall detection system using source separation for sound interference suppression. Signal Proc.110, 199–210 (2015)

    Google Scholar 

  46. Popescu, M., Li, Y., Skubic, M., Rantz, M.: An acoustic fall detector system that uses sound height information to reduce the false alarm rate. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4628–4631. IEEE (2008)

    Google Scholar 

  47. Li, Y., Ho, K.C., Popescu., M.: A microphone array system for automatic fall detection. IEEE Trans. Biomed. Eng. 59(5), 1291–1301 (2012)

    Google Scholar 

  48. Töreyin, B.U., Dedeoğlu, Y., Çetin, A.E.: Hmm based falling person detection using both audio and video. In: International Workshop on Human-Computer Interaction, pp. 211–220. Springer (2005)

    Google Scholar 

  49. Geertsema, E.E., Visser, G.H., Viergever, M.A., Kalitzin, S.N.: Automated remote fall detection using impact features from video and audio. J. Biomech. 88, 25–32 (2019)

    Google Scholar 

  50. Qingzhen, X., Huang, G., Mengjing, Y., Guo, Y.: Fall prediction based on key points of human bones. Physica A Stat. Mech. Appl. 540, 123205 (2020)

    Article  MathSciNet  Google Scholar 

  51. Bradski, G., Kaehler, A.: Learning OpenCV: computer vision with the OpenCV library. " O’Reilly Media, Inc. (2008)

    Google Scholar 

  52. Bradski, G.: The opencv library. Dr Dobb’s J. Softw Tools 25, 120–125 (2000)

    Google Scholar 

  53. Chua, J.L., Chang, Y.C., Lim, W.K.: A simple vision-based fall detection technique for indoor video surveillance. Signal Image Video Proc. 9(3), 623–633 (2015)

    Google Scholar 

  54. Tran, T.H., Le, T.L., Hoang, V.N., Hai, V.: Continuous detection of human fall using multimodal features from kinect sensors in scalable environment. Comput. Methods Progr. Biomed. 146, 151–165 (2017)

    Article  Google Scholar 

  55. Atrey, P.K., Kankanhalli, M.S., Cavallaro, A.: Intelligent multimedia surveillance: current trends and research. Springer (2013)

    Google Scholar 

  56. Ma, C., Shimada, A., Uchiyama, H., Nagahara, H., Taniguchi, R.: Fall detection using optical level anonymous image sensing system. Optics Laser Technol. 110, 44–61 (2019)

    Article  Google Scholar 

  57. El Kaid, A., Baïna, K., Baïna, J.: Reduce false positive alerts for elderly person fall video-detection algorithm by convolutional neural network model. Procedia Comput. Sci. 148, 2–11 (2019)

    Article  Google Scholar 

  58. Iuga, C., Drăgan, P., Buşoniu, L.: Fall monitoring and detection for at-risk persons using a uav. IFAC Papers OnLine 51(10), 199–204 (2018)

    Article  Google Scholar 

  59. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271 (2017)

    Google Scholar 

  60. Fang, W., Zhong, B., Zhao, N., Love, E.D., Luo, H., Xue, J., Xu, S.: A deep learning-based approach for mitigating falls from height with computer vision: convolutional neural network. Adv. Eng. Inform. 39, 170–177 (2019)

    Google Scholar 

  61. Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., Li, C.: Computer vision aided inspection on falling prevention measures for steeplejacks in an aerial environment. Autom. Constr. 93, 148–164 (2018)

    Article  Google Scholar 

  62. Li, W., Tan, B., Piechocki, R.: Passive radar for opportunistic monitoring in e-health applications. IEEE J. Trans. Eng. Health Med. 6, 1–10 (2018)

    Google Scholar 

  63. He, M., Nian, Y., Zhang, Z., Liu, X., Hu, H.: Human fall detection based on machine learning using a thz radar system. In: 2019 IEEE Radar Conference (RadarConf), pp. 1–5. IEEE (2019)

    Google Scholar 

  64. Ding, C., Zou, Y., Sun, L., Hong, H., Zhu, X., Li, C.: Fall detection with multi-domain features by a portable fmcw radar. In: 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1–3. IEEE (2019)

    Google Scholar 

  65. Li, H., Shrestha, A., Heidari, H., Kernec, J.L., Fioranelli, F.: Activities recognition and fall detection in continuous data streams using radar sensor. In: 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), vol. 1, pp. 1–4. IEEE (2019)

    Google Scholar 

  66. Su, B.Y., Ho, K.C., Rantz, M.J., Skubic, M.: Doppler radar fall activity detection using the wavelet transform. IEEE Trans. Biomed. Eng. 62(3), 865–875 (2014)

    Google Scholar 

  67. Yoshino, H., Moshnyaga, V.G., Hashimoto, K.: Fall detection on a single doppler radar sensor by using convolutional neural networks. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2889–2892. IEEE (2019)

    Google Scholar 

  68. Erol, B., Amin, M.: Effects of range spread and aspect angle on radar fall detection. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5. IEEE (2016)

    Google Scholar 

  69. Sadreazami, H., Bolic, M., Rajan, S.: Fall detection using standoff radar-based sensing and deep convolutional neural network. Express Briefs IEEE Trans. Circuits Syst. II (2019)

    Google Scholar 

  70. Chen, S., Fan, C., Huang, X., Cao, C.: Low prf low frequency radar sensor for fall detection by using deep learning. In: 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), pp. 400–404. IEEE (2019)

    Google Scholar 

  71. Erol, B., Amin, M.G.: Radar data cube analysis for fall detection. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2446–2450. IEEE (2018)

    Google Scholar 

  72. Dremina, M.K., Anishchenko, L.N.: Contactless fall detection by means of cw bioradar. In: 2016 Progress in Electromagnetic Research Symposium (PIERS), pp. 2912–2915. IEEE (2016)

    Google Scholar 

  73. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: Mpca: Multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19(1), 18–39 (2008)

    Google Scholar 

  74. Högbom, J.A.: Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Series 15, 417 (1974)

    Google Scholar 

  75. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  76. Wang, H., Zhang, D., Wang, Y., Ma, J., Wang, Y., Li, S.: Rt-fall: a real-time and contactless fall detection system with commodity wifi devices. IEEE Trans. Mobile Comput. 16(2), 511–526 (2016)

    Article  Google Scholar 

  77. Yang, X., Xiong, F., Shao, Y., Niu, Q.: Wmfall: Wifi-based multistage fall detection with channel state information. Int. J. Distr. Sens. Netw. 14(10), 1550147718805718 (2018)

    Google Scholar 

  78. Narui, H., Shu, R., Gonzalez-Navarro, F.F., Ermon, S.: Domain adaptation for human fall detection using wifi channel state information. In: International Workshop on Health Intelligence, pp. 177–181. Springer (2019)

    Google Scholar 

  79. Toda, K., Shinomiya, N.: Machine learning-based fall detection system for the elderly using passive rfid sensor tags. In: 2019 13th International Conference on Sensing Technology (ICST), pp. 1–6. IEEE (2019)

    Google Scholar 

  80. Kaudki, B., Surve, A.: Human fall detection using rfid technology. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–5. IEEE (2018)

    Google Scholar 

  81. Borhani, A., Pätzold, M.: A non-stationary channel model for the development of non-wearable radio fall detection systems. IEEE Trans. Wireless Comm. 17(11), 7718–7730 (2018)

    Article  Google Scholar 

  82. Ruan, W., Yao, L., Sheng, Q.Z., Falkner, N., Li, X., Gu., T.: Tagfall: towards unobstructive fine-grained fall detection based on uhf passive rfid tags. In: proceedings of the 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services on 12th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 140–149 (2015)

    Google Scholar 

  83. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 444–452 (2008)

    Google Scholar 

  84. Madhubala, J.S., Umamakeswari, A., Rani, B.J.A.: A survey on technical approaches in fall detection system. National J. Physiol. Pharmacy Pharmacol. 5(4), 275 (2015)

    Google Scholar 

  85. Droghini, D., Ferretti, D., Principi, E., Squartini, S., Piazza, F.: An end-to-end unsupervised approach employing convolutional neural network autoencoders for human fall detection. In: Italian Workshop on Neural Nets, pp. 185–196. Springer (2017)

    Google Scholar 

  86. Popescu, M., Mahnot, A.: Acoustic fall detection using one-class classifiers. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3505–3508. IEEE (2009)

    Google Scholar 

  87. Droghini, D., Ferretti, D., Principi, E., Squartini, S., Piazza, F.: A combined one-class svm and template-matching approach for user-aided human fall detection by means of floor acoustic features. Comput. Intell. Neurosci. 2017 (2017)

    Google Scholar 

  88. Droghini, D., Vesperini, F., Principi, E., Squartini, S., Piazza, F.: Few-shot siamese neural networks employing audio features for human-fall detection. In: Proceedings of the International Conference on Pattern Recognition and Artificial Intelligence, pp. 63–69 (2018)

    Google Scholar 

  89. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a siamese time delay neural network. In: Advances in neural information processing systems, pp. 737–744 (1994)

    Google Scholar 

  90. Droghini, D., Principi, E., Squartini, S., Olivetti, P., Piazza, F.: Human fall detection by using an innovative floor acoustic sensor. In: Multidisciplinary Approaches to Neural Computing, pp. 97–107. Springer (2018)

    Google Scholar 

  91. Principi, E., Droghini, D., Squartini, S., Olivetti, P., Piazza, F.: Acoustic cues from the floor: a new approach for fall classification. Expert Syst. Appl. 60, 51–61 (2016)

    Article  Google Scholar 

  92. Principi, E., Olivetti, P., Squartini, S., Bonfigli, R., Piazza, F.: A floor acoustic sensor for fall classification. In: Audio Engineering Society Convention 138. Audio Engineering Society (2015)

    Google Scholar 

  93. Li, Y., Banerjee, T., Popescu, M., Skubic, M.: Improvement of acoustic fall detection using kinect depth sensing. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6736–6739. IEEE (2013)

    Google Scholar 

  94. Adnan, S.M., Irtaza, A., Aziz, S., Obaid Ullah, M.O., Javed, A., Mahmood, M.T.: Fall detection through acoustic local ternary patterns. Applied Acoustics 140, 296–300 (2018)

    Google Scholar 

  95. Irtaza, A., Adnan, S.M., Aziz, S., Javed, A., Obaid Ullah, M., Mahmood, M.T.: A framework for fall detection of elderly people by analyzing environmental sounds through acoustic local ternary patterns. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1558–1563. IEEE (2017)

    Google Scholar 

  96. Popescu, M., Coupland, S., Date, S.: A fuzzy logic system for acoustic fall detection. In: AAAI Fall Symposium: AI in Eldercare: New Solutions to Old Problems, pp. 78–83 (2008)

    Google Scholar 

  97. Buerano, J., Zalameda, J., Ruiz, R.S.: Microphone system optimization for free fall impact acoustic method in detection of rice kernel damage. Comput. Electr. Agri. 85, 140–148 (2012)

    Article  Google Scholar 

  98. Zhuang, X., Huang, J., Potamianos, G., Hasegawa-Johnson, M.: Acoustic fall detection using gaussian mixture models and gmm supervectors. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 69–72. IEEE (2009)

    Google Scholar 

  99. Kumar, V., Yeo, B.C., Lim, W.S., Raja, J.E., Koh, K.B.: Development of electronic floor mat for fall detection and elderly care. Asian J. Scient. Res. 11, 344–356 (2018)

    Google Scholar 

  100. Clemente, J., Song, W., Valero, M., Li, F., Liy, X.: Indoor person identification and fall detection through non-intrusive floor seismic sensing. In: 2019 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 417–424. IEEE (2019)

    Google Scholar 

  101. Feng, G., Mai, J., Ban, Z., Guo, X., Wang, G.: Floor pressure imaging for fall detection with fiber-optic sensors. IEEE Pervasive Comput. 15(2), 40–47 (2016)

    Article  Google Scholar 

  102. Litvak, D., Zigel, Y., Gannot, I.: Fall detection of elderly through floor vibrations and sound. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology society, pp. 4632–4635. IEEE (2008)

    Google Scholar 

  103. Minvielle, L., Atiq, M., Serra, R., Mougeot, M., Vayatis, N.: Fall detection using smart floor sensor and supervised learning. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3445–3448. IEEE (2017)

    Google Scholar 

  104. Liu, C., Jiang, Z., Xiangxiang, S., Benzoni, S., Maxwell, A.: Detection of human fall using floor vibration and multi-features semi-supervised svm. Sensors 19(17), 3720 (2019)

    Article  Google Scholar 

  105. Chaccour, K., Darazi, R., el Hassans, A.H., Andres, E.: Smart carpet using differential piezoresistive pressure sensors for elderly fall detection. In: 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 225–229. IEEE (2015)

    Google Scholar 

  106. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

    Google Scholar 

  107. Noble, W.S.: What is a support vector machine? p. 12 (2006)

    Google Scholar 

  108. Peterson, L.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  109. Safavian, S.R., Landgreb, D.:. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Google Scholar 

  110. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 10 (2001)

    Google Scholar 

  111. Stratonovich, R.L.: Conditional markov processes. In: Non-linear transformations of stochastic processes, pp. 427–453. Elsevier (1965)

    Google Scholar 

  112. Rish, I., et al.: An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop on empirical methods in artificial intelligence, pp. 41–46 (2001)

    Google Scholar 

  113. Banna, M.H.A., Haider, M.A., Nahian, M.J.A., Islam, M.M., Taher, K.A., Kaiser, M.S.: Camera model identification using deep cnn and transfer learning approach. In: 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 626–630. IEEE (2019)

    Google Scholar 

  114. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 3 (1996)

    Google Scholar 

  115. Ahad, M.A.R., Antar, A.D., Ahmed, M.: Sensor-based benchmark datasets: comparison and analysis. In: IoT Sensor-Based Activity Recognition, pp. 95–121. Springer (2020)

    Google Scholar 

  116. Martínez-Villaseñor, L., Ponce, H., Brieva, J., Moya-Albor, E., Núñez-Martínez, J., Peñafort-Asturiano, C.: Up-fall detection dataset: a multimodal approach. Sensors 19(9), 1988 (2019)

    Article  Google Scholar 

  117. Tran, T.H., Le, T.L., Pham, D.T., Hoang, V.N., Khong, V.M., Tran, Q.T., Nguyen, T.S., Pham, C.: A multi-modal multi-view dataset for human fall analysis and preliminary investigation on modality. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1947–1952. IEEE (2018)

    Google Scholar 

  118. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3d human activity analysis. In: ICVPR (2016)

    Google Scholar 

  119. Baldewijns, G., Debard, G., Mertes, G., Vanrumste, B., Croonenborghs, T.: Bridging the gap between real-life data and simulated data by providing a highly realistic fall dataset for evaluating camera-based fall detection algorithms. Healthcare Technol. Lett. 3(1), 6–11 (2016)

    Article  Google Scholar 

  120. Vadivelu, S., Ganesan, S., Murthy, O.V.R., Dhall, A.:Thermal imaging based elderly fall detection. In: Asian Conference on Computer Vision, pp. 541–553. Springer (2016)

    Google Scholar 

  121. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Progr. Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  122. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and adaboost-based classification. J. Electr. Imaging 22(4), 041106 (2013)

    Article  Google Scholar 

  123. Zhang, Z., Liu, W., Metsis, V., Athitsos, V.: A viewpoint-independent statistical method for fall detection. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 3626–3630. IEEE (2012)

    Google Scholar 

  124. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Processings IEEE International Conferences Computer Vision (2011)

    Google Scholar 

  125. Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., Meunier, J.: Fall detection with multiple cameras: an occlusion-resistant method based on 3-d silhouette vertical distribution. IEEE Trans. Inform. Technol. Biomed. 15(2), 290–300 (2010)

    Article  Google Scholar 

  126. Hnat, T.W., Srinivasan, V., Lu, J., Sookoor, T.I., Dawson, R., Stankovic, J., Whitehouse, K.: The hitchhiker’s guide to successful residential sensing deployments. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, pp. 232–245 (2011)

    Google Scholar 

  127. Ozcan, K., Velipasalar, S., Varshney, P.K.: Autonomous fall detection with wearable cameras by using relative entropy distance measure. IEEE Trans. Human Machine Syst. 47(1), 31–39 (2016)

    Google Scholar 

  128. Zhang, Z., Conly, C., Athitsos, V.: A survey on vision-based fall detection. In: Proceedings of the 8th ACM international conference on PErvasive technologies related to assistive environments, pp. 1–7 (2015)

    Google Scholar 

  129. Ahad, M.A.R., Antar, A.D., Ahmed, M.: Sensor-based human activity recognition: challenges ahead. In: IoT Sensor-Based Activity Recognition, pp. 175–189. Springer (2020)

    Google Scholar 

  130. Kyriacou, E., Christofides, S., Pattichis, C.S.: Erratum to: Xiv mediterranean conference on medical and biological engineering and computing 2016. In: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, pp. E1–E14. Springer (2017)

    Google Scholar 

  131. Schwickert, L., Becker, C., Lindemann, U., Maréchal, C., Bourke, A., Chiari, L., Helbostad, J.L., Zijlstra, W., Aminian, K., Todd, C., et al.: Fall detection with body-worn sensors. Zeitschrift für Gerontologie und Geriatrie 46(8), 706–719 (2013)

    Google Scholar 

  132. Khan, S.S., Hoey, J.: Review of fall detection techniques: a data availability perspective. Med. Eng. Phys. 39, 12–22 (2017)

    Google Scholar 

  133. Basak, P., Sheikh, M.M., Tasin, S.M., Sakib, A.H.M.N., Tapotee, M.I., Baray, S.B., Ahad, M.A.R.: Complex Nurse Care Activity Recognition Using Statistical Features, 2020 ACM International Symposium on Wearable Computers (UbiComp/ISWC’20Adjunct), Mexico (2020)

    Google Scholar 

  134. Rahman, A., Nahid, N., Hasan, I., Ahad, M.A.R.: Nurse Care Activity Recognition: Using Random Forest to Handle Imbalanced Class Problem, 2020 ACM International Symposium on Wearable Computers (UbiComp/ISWC’20Adjunct), Mexico (2020)

    Google Scholar 

  135. Faisal M.A.A., Siraj, M.S., Abdullah, M.T., Shahid, O., Abir, F.F., Ahad, M.A.R.: A Pragmatic Signal Processing Approach for Nurse Care Activity Recognition using Classical Machine Learning, 2020 ACM International Symposium on Wearable Computers (UbiComp/ISWC’20Adjunct), Mexico (2020)

    Google Scholar 

  136. Islam M.S., Hossain, T., Ahad, M.A.R., Inoue S.: Exploring Human Activity by Using eSense Earable Device, 2nd Int. Conf. on Activity and Bheavior Computing (ABC), Japan (2020)

    Google Scholar 

  137. Koshmak, G., Loutfi, A., Linden, M.: Challenges and issues in multisensor fusion approach for fall detection. J. Sens. 2016 (2016)

    Google Scholar 

  138. Fioranelli, F., Ritchie, M., Griffiths, H.: Multistatic human micro-doppler classification of armed/unarmed personnel. IET Radar Sonar Navigat. 9(7), 857–865 (2015)

    Article  Google Scholar 

  139. Fioranelli, F., Ritchie, M., Griffiths, H.: Aspect angle dependence and multistatic data fusion for micro-doppler classification of armed/unarmed personnel. IET Radar Sonar Navigat. 9(9), 1231–1239 (2015)

    Article  Google Scholar 

  140. Fioranelli, F., Ritchie, M., Griffiths, H.: Classification of unarmed/armed personnel using the netrad multistatic radar for micro-doppler and singular value decomposition features. IEEE Geosci. Remote Sens. Lett. 12(9), 1933–1937 (2015)

    Article  Google Scholar 

  141. Fioranelli, F., Ritchie, M., Griffiths, H.: Centroid features for classification of armed/unarmed multiple personnel using multistatic human micro-doppler. IET Radar Sonar Navigat. 10(9), 1702–1710 (2016)

    Article  Google Scholar 

  142. Fioranelli, F., Ritchie, M., Griffiths, H.: Analysis of polarimetric multistatic human micro-doppler classification of armed/unarmed personnel. In: 2015 IEEE Radar Conference (RadarCon), pp. 0432–0437. IEEE (2015)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Information and Communication Technology division of the Government of the People’s Republic of Bangladesh in 2018–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jaber Al Nahian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nahian, M.J.A., Raju, M.H., Tasnim, Z., Mahmud, M., Ahad, M.A.R., Kaiser, M.S. (2021). Contactless Fall Detection for the Elderly. In: Ahad, M.A.R., Mahbub, U., Rahman, T. (eds) Contactless Human Activity Analysis. Intelligent Systems Reference Library, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-68590-4_8

Download citation

Publish with us

Policies and ethics