Skip to main content

Patch-Based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation (HECKTOR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12603))

Included in the following conference series:

Abstract

Automatic segmentation of tumor eliminates problems associated with manual annotation of region-of-interest (ROI) from medical images, such as significant human efforts and inter-observer variability. Accurate segmentation of head and neck tumor has a tremendous potential for better radiation treatment planning for cancer (such as oropharyngeal cancer) and also for optimized patient care. In recent times, the development in deep learning models has been able to effectively and accurately perform segmentation tasks in semantic segmentation as well as in medical image segmentation. In medical imaging, different modalities focus on different properties and combining the information from them can improve the segmentation task. In this paper we developed a patch-based deep learning model to tackle the memory issue associated with training the network on 3D images. Furthermore, an ensemble of conventional and dilated convolutions was used to take advantage of both methods: the smaller receptive field of conventional convolution allows to capture finer details, whereas the larger receptive field of dilated convolution allows to capture better global information. Using patch-based 3D UNet with an ensemble of conventional and dilated convolution yield promising result, with a final dice score of 0.6911.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrearczyk, V., et al.: Automatic segmentation of head and neck tumors and nodal metastases in PET-CT scans. In: Medical Imaging with Deep Learning, MIDL (2020)

    Google Scholar 

  2. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2020: automatic head and neck tumor segmentation in PET/CT. In: Andrearczyk, V., et al. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 1–21. Springer, Cham (2021)

    Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgements

This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services, under Contract No. 75N91020C00048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanchan Ghimire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghimire, K., Chen, Q., Feng, X. (2021). Patch-Based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds) Head and Neck Tumor Segmentation. HECKTOR 2020. Lecture Notes in Computer Science(), vol 12603. Springer, Cham. https://doi.org/10.1007/978-3-030-67194-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67194-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67193-8

  • Online ISBN: 978-3-030-67194-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics