Skip to main content

Sustainable Exploitation of Agro-Food Waste

  • Chapter
  • First Online:
Agri-food and Forestry Sectors for Sustainable Development

Part of the book series: Sustainable Development Goals Series ((SDGS))

  • 341 Accesses

Abstract

The efficient use of agricultural and agro-industrial waste, i.e., converting waste materials into value-added products, is crucial to an effective bioeconomic strategy for sustainable development. A new value chain from agro-food waste is proposed, assessing the need to prioritize high-value by-products and based on the availability of effective and efficient technologies. Real-scale applications of controlled hydrodynamic cavitation (HC) in the processing of underutilized resources and agro-food waste are reviewed, due to their several advantages in shorter process times, higher energy efficiency, higher yields and enhanced extraction rates, and higher stability of the products, including superior retention of bioactive compounds. Part of this chapter focuses on the important case study of the integral valorization of citrus fruit processing waste, in particular citrus peels discarded by the juice industry, as a source of extremely valuable micronutrients, endowed with extraordinary antioxidant, broad-spectrum antibiotic, anti-inflammatory, and antiviral activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development; 2018;

    Google Scholar 

  2. FAO Food and Agriculture Organization: Technical platform on the measurement and reduction of food loss and waste. Available online: http://www.fao.org/platform-food-loss-waste/en/. Accessed on 20 Jun 2020.

  3. Xiong, X., Yu, I.K.M., Tsang, D.C.W., Bolan, N.S., Sik Ok, Y., Igalavithana, A.D., Kirkham, M.B., Kim, K.H., Vikrant, K.: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem. Eng. J. 375, 121983 (2019). https://doi.org/10.1016/j.cej.2019.121983

    Article  CAS  Google Scholar 

  4. Moncada, B.J., Aristizábal, M.V., Cardona, A.C.A.: Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016). https://doi.org/10.1016/j.bej.2016.06.009

    Article  CAS  Google Scholar 

  5. Cardona-Alzate, C.A., Serna-Loaiza, S., Ortiz-Sanchez, M.: Sustainable biorefineries: what was learned from the design, analysis and implementation. J. Sustain. Dev. Energy, Water Environ. Syst. 8, 88–117 (2020). https://doi.org/10.13044/j.sdewes.d7.0268

    Article  Google Scholar 

  6. Tuck, C.O.: Valorization of biomass: deriving more value from waste (Science (695)). Science (80-). 338, 604 (2012). https://doi.org/10.1126/science.338.6107.604-b

    Article  CAS  Google Scholar 

  7. Demichelis, F., Fiore, S., Pleissner, D., Venus, J.: Technical and economic assessment of food waste valorization through a biorefinery chain. Renew. Sust. Energ. Rev. 94, 38–48 (2018). https://doi.org/10.1016/j.rser.2018.05.064

    Article  Google Scholar 

  8. Cravotto, G., Mariatti, F., Gunjevic, V., Secondo, M., Villa, M., Parolin, J., Cavaglià, G.: Pilot scale cavitational reactors and other enabling technologies to design the industrial recovery of polyphenols from agro-food by-products, a technical and economical overview. Foods. 7, 130 (2018). https://doi.org/10.3390/foods7090130

    Article  CAS  Google Scholar 

  9. Pfaltzgraff, L.A., De Bruyn, M., Cooper, E.C., Budarin, V., Clark, J.H.: Food waste biomass: a resource for high-value chemicals. Green Chem. 15, 307–314 (2013). https://doi.org/10.1039/c2gc36978h

    Article  CAS  Google Scholar 

  10. Jin, Q., Yang, L., Poe, N., Huang, H.: Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends Food Sci. Technol. 74, 119–131 (2018). https://doi.org/10.1016/j.tifs.2018.02.014

    Article  CAS  Google Scholar 

  11. Nayak, A., Bhushan, B.: An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 233, 352–370 (2019). https://doi.org/10.1016/j.jenvman.2018.12.041

    Article  CAS  Google Scholar 

  12. Panda, D., Manickam, S.: Cavitation technology-the future of greener extraction method: a review on the extraction of natural products and process intensification mechanism and perspectives. Appl. Sci. 9 (2019). https://doi.org/10.3390/app9040766

  13. Asaithambi, N., Singha, P., Dwivedi, M., Singh, S.K.: Hydrodynamic cavitation and its application in food and beverage industry: a review. J. Food Process Eng., e13144 (2019). https://doi.org/10.1111/jfpe.13144

  14. Meneguzzo, F., Albanese, L., Zabini, F.: Hydrodynamic cavitation in beer and other beverages processing. In: Reference Module in Food Science. Elsevier (2020) ISBN 9780081005965

    Google Scholar 

  15. Martynenko, A., Astatkie, T., Satanina, V.: Novel hydrothermodynamic food processing technology. J. Food Eng. 152, 8–16 (2015). https://doi.org/10.1016/j.jfoodeng.2014.11.016

    Article  CAS  Google Scholar 

  16. Fan, L., Martynenko, A., Doucette, C., Hughes, T., Fillmore, S.: Microbial quality and shelf life of blueberry Purée developed using cavitation technology. J. Food Sci. 83, 732–739 (2018). https://doi.org/10.1111/1750-3841.14073

    Article  CAS  Google Scholar 

  17. Martynenko, A., Chen, Y.: Degradation kinetics of total anthocyanins and formation of polymeric color in blueberry hydrothermodynamic (HTD) processing. J. Food Eng. 171, 44–51 (2016). https://doi.org/10.1016/j.jfoodeng.2015.10.008

    Article  CAS  Google Scholar 

  18. Chen, Y., Martynenko, A.: Storage stability of cranberry puree products processed with hydrothermodynamic (HTD) technology. LWT - Food Sci. Technol. 79, 543–553 (2017). https://doi.org/10.1016/j.lwt.2016.10.060

    Article  CAS  Google Scholar 

  19. Healthy Berries Ltd – Superfruit Purée: Available online: https://lovehealthyberries.ca/

  20. Rodríguez-Bernal, J.M., Herrera-Ardila, Y.M., Olivares-Tenorio, M.L., Leyva-Reyes, M.F., Klotz-Ceberio, B.F.: Determination of antioxidant capacity in blackberry (Rubus glaucus) jam processed by hydrotermodynamic cavitation compared with traditional technology. DYNA. 87, 118–125 (2020). https://doi.org/10.15446/dyna.v87n215.84521

    Article  Google Scholar 

  21. Albanese, L., Ciriminna, R., Meneguzzo, F., Pagliaro, M.: Innovative beer-brewing of typical, old and healthy wheat varieties to boost their spreading. J. Clean. Prod. 171, 297–311 (2018). https://doi.org/10.1016/j.jclepro.2017.10.027

    Article  Google Scholar 

  22. Ciriminna, R., Albanese, L., Di Stefano, V., Delisi, R., Avellone, G., Meneguzzo, F., Pagliaro, M.: Beer produced via hydrodynamic cavitation retains higher amounts of xanthohumol and other hops prenylflavonoids. LWT – Food Sci. Technol. 91, 160–167 (2018). https://doi.org/10.1016/j.lwt.2018.01.037

    Article  CAS  Google Scholar 

  23. Lohani, U.C., Muthukumarappan, K., Meletharayil, G.H.: Application of hydrodynamic cavitation to improve antioxidant activity in sorghum flour and apple pomace. Food Bioprod. Process. 100, 335–343 (2016). https://doi.org/10.1016/j.fbp.2016.08.005

    Article  CAS  Google Scholar 

  24. Grillo, G., Boffa, L., Binello, A., Mantegna, S., Cravotto, G., Chemat, F., Dizhbite, T., Lauberte, L., Telysheva, G.: Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors. Food Res. Int. 115, 200–208 (2019). https://doi.org/10.1016/j.foodres.2018.08.057

    Article  CAS  Google Scholar 

  25. Zuin, V.G., Ramin, L.Z.: Green and sustainable separation of natural products from agro-industrial waste: challenges, potentialities, and perspectives on emerging approaches. Top. Curr. Chem. 376 (2018). https://doi.org/10.1007/s41061-017-0182-z

  26. Gogate, P.R., Pandit, A.B.: A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason. Sonochem. 12, 21–27 (2005). https://doi.org/10.1016/j.ultsonch.2004.03.007

    Article  CAS  Google Scholar 

  27. Arrojo, S., Benito, Y.: A theoretical study of hydrodynamic cavitation. Ultrason. Sonochem. 15, 203–211 (2008). https://doi.org/10.1016/j.ultsonch.2007.03.007

    Article  CAS  Google Scholar 

  28. Ren, X., Li, C., Yang, F., Huang, Y., Huang, C., Zhang, K., Yan, L.: Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. J. Food Eng. 265, 109697 (2020). https://doi.org/10.1016/j.jfoodeng.2019.109697

    Article  CAS  Google Scholar 

  29. Panda, D., Saharan, V.K., Manickam, S.: Controlled hydrodynamic cavitation: a review of recent advances and perspectives for greener processing. PRO. 8, 220 (2020). https://doi.org/10.3390/PR8020220

    Article  CAS  Google Scholar 

  30. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Pandit, A.B.: Cavitationally driven transformations: a technique of process intensification. Ind. Eng. Chem. Res. 58, 5797–5819 (2019). https://doi.org/10.1021/acs.iecr.8b04524

    Article  CAS  Google Scholar 

  31. Albanese, L., Meneguzzo, F.: Hydrodynamic cavitation technologies: a pathway to more sustainable, healthier beverages, and food supply chains. In: Grumezescu, A., Holban, A.M. (eds.) Processing and Sustainability of Beverages. Volume 2: The Science of Beverages, pp. 319–372. Elsevier (2019) ISBN 9780128152591

    Google Scholar 

  32. González-Centeno, M.R., Comas-Serra, F., Femenia, A., Rosselló, C., Simal, S.: Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. Ultrason. Sonochem. 22, 506–514 (2015). https://doi.org/10.1016/j.ultsonch.2014.05.027

    Article  CAS  Google Scholar 

  33. Das, A.B., Goud, V.V., Das, C.: Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) using ultrasound: a comparative analysis and phytochemical profiling. Ind. Crops Prod. 95, 332–341 (2017). https://doi.org/10.1016/j.indcrop.2016.10.041

    Article  CAS  Google Scholar 

  34. He, B., Zhang, L.L., Yue, X.Y., Liang, J., Jiang, J., Gao, X.L., Yue, P.X.: Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 204, 70–76 (2016). https://doi.org/10.1016/j.foodchem.2016.02.094

    Article  CAS  Google Scholar 

  35. Luengo, E., Condón-Abanto, S., Condón, S., Álvarez, I., Raso, J.: Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep. Purif. Technol. 136, 130–136 (2014). https://doi.org/10.1016/j.seppur.2014.09.008

    Article  CAS  Google Scholar 

  36. Eh, A.L.S., Teoh, S.G.: Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason. Sonochem. 19, 151–159 (2012). https://doi.org/10.1016/j.ultsonch.2011.05.019

    Article  CAS  Google Scholar 

  37. Li, X., Mettu, S., Martin, G.J.O., Ashokkumar, M., Sze, C., Lin, K.: Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrason. Sonochemistry. 53, 77–82 (2019). https://doi.org/10.1016/j.ultsonch.2018.12.035

    Article  CAS  Google Scholar 

  38. Medfai, W., Del Mar Contreras, M., Lama-Muñ Oz, A., Mhamdi, R., Oueslati, I., Castro, E.: How cultivar and extraction conditions affect antioxidants type and extractability for olive leaves valorization. ACS Sustain. Chem. Eng. 8, 5107–5118 (2020). https://doi.org/10.1021/acssuschemeng.9b07175

  39. Hassen, I., Casabianca, H., Hosni, K.: Biological activities of the natural antioxidant oleuropein: exceeding the expectation – a mini-review. J. Funct. Foods. 18, 926–940 (2015)

    Google Scholar 

  40. Lama-Muñoz, A., Del Mar Contreras, M., Espínola, F., Moya, M., Romero, I., Castro, E.: Optimization of oleuropein and luteolin-7-o-glucoside extraction from olive leaves by ultrasound-assisted technology. Energies. 12 (2019). https://doi.org/10.3390/en12132486

  41. Cifá, D., Skrt, M., Pittia, P., Di Mattia, C., Poklar Ulrih, N.: Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 6, 1128–1137 (2018). https://doi.org/10.1002/fsn3.654

    Article  CAS  Google Scholar 

  42. Alcántara, C., Žugčić, T., Abdelkebir, R., García-Pérez, J.V., Jambrak, A.R., Lorenzo, J.M., Collado, M.C., Granato, D., Barba, F.J.: Effects of ultrasound-assisted extraction and solvent on the phenolic profile, bacterial growth, and anti-inflammatory/antioxidant activities of mediterranean olive and fig leaves extracts. Molecules. 25 (2020). https://doi.org/10.3390/molecules25071718

  43. Li, K., Woo, M.W., Patel, H., Metzger, L., Selomulya, C.: Improvement of rheological and functional properties of milk protein concentrate by hydrodynamic cavitation. J. Food Eng. 221, 106–113 (2018). https://doi.org/10.1016/j.jfoodeng.2017.10.005

    Article  CAS  Google Scholar 

  44. Pathania, S., Ho, Q.T., Hogan, S.A., McCarthy, N., Tobin, J.T.: Applications of hydrodynamic cavitation for instant rehydration of high protein milk powders. J. Food Eng. 225, 18–25 (2018). https://doi.org/10.1016/j.jfoodeng.2018.01.005

    Article  CAS  Google Scholar 

  45. Meletharayil, G.H., Metzger, L.E., Patel, H.A.: Influence of hydrodynamic cavitation on the rheological properties and microstructure of formulated Greek-style yogurts. J. Dairy Sci. 99, 8537–8548 (2016). https://doi.org/10.3168/jds.2015-10774

    Article  CAS  Google Scholar 

  46. Preece, K.E., Hooshyar, N., Krijgsman, A.J., Fryer, P.J., Zuidam, N.J.: Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innov. Food Sci. Emerg. Technol. 41, 47–55 (2017). https://doi.org/10.1016/j.ifset.2017.01.002

    Article  CAS  Google Scholar 

  47. Meneguzzo, F., Brunetti, C., Fidalgo, A., Ciriminna, R., Delisi, R., Albanese, L., Zabini, F., Gori, A., Nascimento, L.B.d.S., De Carlo, A., Ferrini, F., Ilharco, L.M., Pagliaro, M.: Real-scale integral valorization of waste orange peel via hydrodynamic cavitation. PRO, 7 (2019). https://doi.org/10.3390/pr7090581

  48. Mellinas, C., Ramos, M., Jiménez, A., Garrigós, M.C.: Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials (Basel). 13, 673 (2020). https://doi.org/10.3390/ma13030673

    Article  CAS  Google Scholar 

  49. Nuzzo, D., Cristaldi, L., Sciortino, M., Albanese, L., Scurria, A., Zabini, F., Lino, C., Pagliaro, M., Meneguzzo, F., Di Carlo, M., Ciriminna, R.: Exceptional antioxidant, non-cytotoxic activity of integral lemon pectin from hydrodynamic cavitation. Chemistry Select. 5, 5066–5071 (2020). https://doi.org/10.1002/slct.202000375

    Article  CAS  Google Scholar 

  50. Presentato, A., Piacenza, E., Scurria, A., Albanese, L., Zabini, F., Meneguzzo, F., Nuzzo, D., Pagliaro, M., Martino, D.C., Alduina, R., Ciriminna, R.: A new water-soluble bactericidal agent for the treatment of infections caused by gram-positive and gram-negative bacterial strains. Antibiotics. 9, 586 (2020). https://doi.org/10.3390/antibiotics9090586

    Article  CAS  Google Scholar 

  51. Hilali, S., Fabiano-Tixier, A.S., Ruiz, K., Hejjaj, A., Ait Nouh, F., Idlimam, A., Bily, A., Mandi, L., Chemat, F.: Green extraction of essential oils, polyphenols, and pectins from orange peel employing solar energy: toward a zero-waste biorefinery. ACS Sustain. Chem. Eng. (2019, acssuschemeng.9b02281,). https://doi.org/10.1021/acssuschemeng.9b02281

  52. Fitzgerald, C., Hossain, M., Rai, D.K.: Waste/by-product utilisations. In: Aguiló-Aguayoi, I., Plaza, L. (eds.) Innovative Technologies in Beverage Processing, pp. 299–309. Wiley, Chichester, UK (2017) ISBN 9781118929346

    Google Scholar 

  53. Hollingsworth, R.G.: Limonene, a citrus extract, for control of mealybugs and scale insects. J. Econ. Entomol. 98, 772–779 (2005). https://doi.org/10.1603/0022-0493-98.3.772

    Article  CAS  Google Scholar 

  54. Ciriminna, R., Chavarría-Hernández, N., Inés Rodríguez Hernández, A., Pagliaro, M.: Pectin: a new perspective from the biorefinery standpoint. Biofuels Bioprod. Biorefining. 9, 368–377 (2015). https://doi.org/10.1002/bbb.1551

    Article  CAS  Google Scholar 

  55. Pagliaro, M., Rosaria, C., Fidalgo, A.M.A., Delisi, R., Ilharco, L.: Pectin production and global market. Agro Food Ind Hi Tech. 27, 17–20 (2016)

    Google Scholar 

  56. Ciriminna, R., Fidalgo, A., Delisi, R., Carnaroglio, D., Grillo, G., Cravotto, G., Tamburino, A., Ilharco, L.M., Pagliaro, M.: High-quality essential oils extracted by an eco-friendly process from different citrus fruits and fruit regions. ACS Sustain. Chem. Eng. 5, 5578–5587 (2017). https://doi.org/10.1021/acssuschemeng.7b01046

    Article  CAS  Google Scholar 

  57. Minzanova, S.T., Mironov, V.F., Arkhipova, D.M., Khabibullina, A.V., Mironova, L.G., Zakirova, Y.M., Milyukov, V.A.: Biological activity and pharmacological application of pectic polysaccharides: a review. Polymers (Basel). 10, 1407 (2018). https://doi.org/10.3390/polym10121407

    Article  CAS  Google Scholar 

  58. Dickinson, E.: Hydrocolloids acting as emulsifying agents – how do they do it? Food Hydrocoll. 78, 2–14 (2018). https://doi.org/10.1016/j.foodhyd.2017.01.025

  59. Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J.: Emulsion stabilizing properties of pectin. Food Hydrocoll. 17, 455–462 (2003). https://doi.org/10.1016/S0268-005X(03)00027-4

    Article  CAS  Google Scholar 

  60. Presentato, A., Scurria, A., Albanese, L., Lino, C., Sciortino, M., Pagliaro, M., Zabini, F., Meneguzzo, F., Alduina, R., Nuzzo, D., Ciriminna, R.: Superior antibacterial activity of integral lemon pectin via hydrodynamic cavitation. Chemistry Open. 9, 628–630 (2020). https://doi.org/10.1002/open.202000076

    Article  CAS  Google Scholar 

  61. Meneguzzo, F., Ciriminna, R., Zabini, F., Pagliaro, M.: Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. PRO. 8, 549 (2020). https://doi.org/10.3390/PR8050549

    Article  CAS  Google Scholar 

  62. Ciriminna, R., Fidalgo, A., Scurria, A., Sciortino, M., Lino, C., Meneguzzo, F., Ilharco, L.M., Pagliaro, M.: The case for a lemon bioeconomy. Adv. Sustain. Syst. 4, 2000006 (2020). https://doi.org/10.1002/adsu.202000006

    Article  CAS  Google Scholar 

  63. Bellavite, P., Donzelli, A.: Hesperidin and SARS-CoV-2: new light on the healthy function of citrus fruits. Antioxidants. 9, 742 (2020). https://doi.org/10.3390/antiox9080742

    Article  CAS  Google Scholar 

  64. Behloul, N., Baha, S., Guo, Y., Yang, Z., Shi, R., Meng, J.: In silico identification of strong binders of the SARS-CoV-2 receptor-binding domain. Eur. J. Pharmacol., 173701 (2020). https://doi.org/10.1016/j.ejphar.2020.173701

  65. Haggag, Y.A., El-Ashmawy, N.E., Okasha, K.M.: Is hesperidin essential for prophylaxis and treatment of COVID-19 infection? Med. Hypotheses. 144, 109957 (2020). https://doi.org/10.1016/j.mehy.2020.109957

    Article  CAS  Google Scholar 

  66. Yang, R., Liu, H., Bai, C., Wang, Y., Zhang, X., Guo, R., Wu, S., Wang, J., Leung, E., Chang, H., Li, P., Liu, T., Wang, Y.: Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): in silico and experimental study. Pharmacol. Res. 157, 104820 (2020). https://doi.org/10.1016/j.phrs.2020.104820

    Article  CAS  Google Scholar 

  67. Basu, A., Sarkar, A., Maulik, U.: Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci. Rep. 10, 17699 (2020). https://doi.org/10.1038/s41598-020-74715-4

    Article  CAS  Google Scholar 

  68. Rana, R.L., Lombardi, M., Giungato, P., Tricase, C.: Trends in scientific literature on energy return ratio of renewable energy sources for supporting policymakers. Adm. Sci. 10, 21 (2020). https://doi.org/10.3390/admsci10020021

    Article  Google Scholar 

  69. Ripa, M., Buonaurio, C., Mellino, S., Fiorentino, G., Ulgiati, S.: Recycling waste cooking oil into biodiesel: a life cycle assessment. Int. J. Performability Eng. 10, 347–356 (2014). https://doi.org/10.23940/IJPE.14.4.P347.MAG

    Article  Google Scholar 

  70. Avagyan, A.B., Singh, B., Avagyan, A.B., Singh, B.: Biodiesel from plant oil and waste cooking oil. In: Biodiesel: Feedstocks, Technologies, Economics and Barriers, pp. 15–75. Singapore, Springer Singapore (2019)

    Chapter  Google Scholar 

  71. Toor, M., Kumar, S.S., Malyan, S.K., Bishnoi, N.R., Mathimani, T., Rajendran, K., Pugazhendhi, A.: An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere. 242 (2020). https://doi.org/10.1016/j.chemosphere.2019.125080

  72. Ramirez-Cadavid, D.A., Kozyuk, O., Lyle, P., Michel, F.C.: Effects of hydrodynamic cavitation on dry mill corn ethanol production. Process Biochem. 51, 500–508 (2016). https://doi.org/10.1016/j.procbio.2016.01.001

    Article  CAS  Google Scholar 

  73. Kim, I., Lee, I., Jeon, S.H., Hwang, T., Han, J.I.: Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Bioresour. Technol. 192, 335–339 (2015). https://doi.org/10.1016/j.biortech.2015.05.038

    Article  CAS  Google Scholar 

  74. Terán Hilares, R., dos Santos, J.C., Ahmed, M.A., Jeon, S.H., da Silva, S.S., Han, J.I.: Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries. Bioresour. Technol. 214, 609–614 (2016). https://doi.org/10.1016/j.biortech.2016.05.004

    Article  CAS  Google Scholar 

  75. Wu, Z., Tagliapietra, S., Giraudo, A., Martina, K., Cravotto, G.: Harnessing cavitational effects for green process intensification. Ultrason. Sonochem. 52, 530–546 (2019). https://doi.org/10.1016/j.ultsonch.2018.12.032

    Article  CAS  Google Scholar 

  76. Rouhany, M., Montgomery, H., Rouhany, M., Montgomery, H.: Global biodiesel production: The state of the art and impact on climate change. In: Tabatabaei, M., Aghbashlo, M. (eds.) Biodiesel. Biofuel and Biorefinery Tech. Springer, Cham (2019)

    Google Scholar 

  77. Carpenter, J., Badve, M., Rajoriya, S., George, S., Saharan, V.K., Pandit, A.B.: Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. Rev. Chem. Eng. 33, 433–468 (2017). https://doi.org/10.1515/revce-2016-0032

    Article  CAS  Google Scholar 

  78. Rinaldi, L., Wu, Z., Giovando, S., Bracco, M., Crudo, D., Bosco, V., Cravotto, G.: Oxidative polymerization of waste cooking oil with air under hydrodynamic cavitation. Green Process. Synth. 6, 425–432 (2017). https://doi.org/10.1515/gps-2016-0142

    Article  CAS  Google Scholar 

  79. Ghayal, D., Pandit, A.B., Rathod, V.K.: Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil. Ultrason. Sonochem. 20, 322–328 (2013). https://doi.org/10.1016/j.ultsonch.2012.07.009

    Article  CAS  Google Scholar 

  80. Maddikeri, G.L., Gogate, P.R., Pandit, A.B.: Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel. 137, 285–292 (2014). https://doi.org/10.1016/j.fuel.2014.08.013

    Article  CAS  Google Scholar 

  81. Chuah, L.F., Yusup, S., Abd Aziz, A.R., Bokhari, A., Abdullah, M.Z.: Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. J. Clean. Prod. 112, 4505–4514 (2016). https://doi.org/10.1016/j.jclepro.2015.06.112

    Article  CAS  Google Scholar 

  82. Bargole, S., George, S., Kumar Saharan, V.: Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios. Chem. Eng. Process. – Process Intensif. 139, 1–13 (2019). https://doi.org/10.1016/j.cep.2019.03.012

    Article  CAS  Google Scholar 

  83. Patil, P.N., Gogate, P.R., Csoka, L., Dregelyi-Kiss, A., Horvath, M.: Intensification of biogas production using pretreatment based on hydrodynamic cavitation. Ultrason. Sonochem. 30, 79–86 (2016). https://doi.org/10.1016/j.ultsonch.2015.11.009

    Article  CAS  Google Scholar 

  84. Nagarajan, S., Ranade, V.V.: Pretreatment of lignocellulosic biomass using vortex-based devices for cavitation: influence on biomethane potential. Ind. Eng. Chem. Res. 58, 15975–15988 (2019). https://doi.org/10.1021/acs.iecr.9b00859

    Article  CAS  Google Scholar 

  85. Nagarajan, S., Ranade, V.V.: Pre-treatment of distillery spent wash (vinasse) with vortex based cavitation and its influence on biogas generation. Bioresour. Technol. Rep. 11, 100480 (2020). https://doi.org/10.1016/j.biteb.2020.100480

    Article  Google Scholar 

  86. Garuti, M., Langone, M., Fabbri, C., Piccinini, S.: Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant. Bioresour. Technol. 247, 599–609 (2018). https://doi.org/10.1016/j.biortech.2017.09.100

    Article  CAS  Google Scholar 

  87. Dahunsi, S.O., Oranusi, S., Efeovbokhan, V.E.: Cleaner energy for cleaner production: modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit peels. J. Clean. Prod. 156, 19–29 (2017). https://doi.org/10.1016/j.jclepro.2017.04.042

    Article  CAS  Google Scholar 

  88. Albanese, L., Baronti, S., Liguori, F., Meneguzzo, F., Barbaro, P., Vaccari, F.P.: Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity: a case study. J. Clean. Prod. 210, 159–169 (2019). https://doi.org/10.1016/j.jclepro.2018.10.341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meneguzzo, F., Zabini, F. (2021). Sustainable Exploitation of Agro-Food Waste. In: Agri-food and Forestry Sectors for Sustainable Development. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-030-66284-4_8

Download citation

Publish with us

Policies and ethics