Skip to main content

Study of Pathologies in Alkali-Activated Materials Based on Slag

  • Conference paper
  • First Online:
Characterization of Minerals, Metals, and Materials 2021

Abstract

The main pathogens that occur in alkali-activated materials based on blast furnace slag are efflorescence and the black heart, due to the saturation of very high amounts of sodium. Therefore, the objective of this work was to measure the alkali mortars activated by a solution of 2.5, 5, 7.5, 10, 12.5, and 15M using sodium hydroxide, testing the material under compression and water absorption with 7 days of curing at room temperature, and thermal curing at 60 °C. The results show that the use of 12.5M and 15M causes the appearance of this pathology when curing in a normal environment, while compositions with 10M, 7.5M, and 5M present excellent technological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angulo-Ramírez DE, Mejía de Gutiérrez R, Medeiros M (2018) Alkali-activated Portland blast furnace slag cement mortars: Performance to alkali-aggregate reaction. Constr Build Mater 179:49–56. https://doi.org/10.1016/j.conbuildmat.2018.05.183

    Article  CAS  Google Scholar 

  2. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ (2014) Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. CemConcr Compos 45: 125–135. DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.006

    Google Scholar 

  3. Lahoti M, Tan KH, Yang EH (2019) A critical review of geopolymer properties for structural fire-resistance applications. Constr Build Mater 221:514–526. https://doi.org/10.1016/j.conbuildmat.2019.06.076

    Article  CAS  Google Scholar 

  4. Majidi B (2009) Geopolymer technology, from fundamentals to advanced applications: a review. Mater Technol 24:79–87. https://doi.org/10.1179/175355509X449355

    Article  CAS  Google Scholar 

  5. Marvila MT, Alexandre J, de Azevedo ARG, Zanelato EB (2019) Evaluation of the use of marble waste in hydrated lime cement mortar based. J Mater Cycles Waste Manag 21:1250–1261. https://doi.org/10.1007/s10163-019-00878-6

    Article  CAS  Google Scholar 

  6. Marvila MT, Azevedo ARG, Barroso LS, Barbosa MZ, de Brito J (2020) Gypsum plaster using rock waste: a proposal to repair the renderings of historical buildings in Brazil. Constr Build Mater 250:118786. https://doi.org/10.1016/j.conbuildmat.2020.118786

    Article  Google Scholar 

  7. Provis JL (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct Constr 47:11–25. https://doi.org/10.1617/s11527-013-0211-5

    Article  CAS  Google Scholar 

  8. Azevedo ARG, Vieira CMF, Ferreira WM, Faria KCP, Pedroti LG, Mendes BC (2020) Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J. Build Eng 29:101156. https://doi.org/10.1016/j.jobe.2019.101156

    Article  Google Scholar 

  9. de Azevedo ARG, Marvila MT, Tayeh BA, Cecchin D, Pereira AC, Monteiro SN (2021) Technological performance of açaí natural fibre reinforced cement-based mortars. J Build Eng 33:101675. https://doi.org/10.1016/j.jobe.2020.101675

    Article  Google Scholar 

  10. Simão L, Hotza D, Ribeiro MJ, Novais RM, Montedo ORK, Raupp-Pereira F (2020) Development of new geopolymers based on stone cutting waste. Constr Build Mater 257:119525. https://doi.org/10.1016/j.conbuildmat.2020.119525

    Article  CAS  Google Scholar 

  11. Zhang Z, Provis JL, Ma X, Reid A, Wang H (2018) Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cem Concr Compos 92:165–177. https://doi.org/10.1016/j.cemconcomp.2018.06.010

    Article  CAS  Google Scholar 

  12. Longhi MA, Rodríguez ED, Walkley B, Zhang Z, Kirchheim AP (2020) Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. Compos Part B Eng 182:107671. https://doi.org/10.1016/j.compositesb.2019.107671

    Article  CAS  Google Scholar 

  13. Provis JL, Bernal SA (2014) Geopolymers and related Alkali-activated materials. Annu Rev Mater Res 44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  CAS  Google Scholar 

  14. Provis JL, van Deventer JSJ, kinetics G (2007) 1. In situ energy-dispersive X-ray diffractometry. Chem Eng Sci 62: 2309–2317. DOI: https://doi.org/10.1016/j.ces.2007.01.027

    Google Scholar 

  15. Duxson P, Mallicoat SW, Lukey GC, Kriven WM, van Deventer JSJ (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf Physicochem Eng Asp 292:8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044

    Article  CAS  Google Scholar 

  16. Rivera JF, Cuarán-Cuarán ZI, Vanegas-Bonilla N, Mejía de Gutiérrez R (2018) Novel use of waste glass powder: Production of geopolymeric tiles. Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.09.023

    Article  Google Scholar 

  17. Kharol SK, Fioletov V, McLinden CA, Shephard MW, Sioris CE, Li C, Krotkov NA (2020) Ceramic industry at Morbi as a large source of SO2 emissions in India. Atmos Environ 223:117243. https://doi.org/10.1016/j.atmosenv.2019.117243

    Article  CAS  Google Scholar 

  18. Cava S, Longo E, Paskocimas CA, Varela JA, Tasca A, Mendonça T, Herter CG, Barbosa JC Jr (2000) Influência da cinética de oxidação no controle da atmosfera de fornos de revestimentos cerâmicos. Cerâmica 46:56–60. https://doi.org/10.1590/S0366-69132000000200002

    Article  CAS  Google Scholar 

  19. Santos IMG, Silva JM, Trindade MFS, Soledade LEB, Souza AG, Paskocimas CA, Longo E (2005) Efeito da adição de rejeito na redução de coração negro em cerâmicas vermelhas. Cerâmica 51:144–150. https://doi.org/10.1590/S0366-69132005000200012

    Article  CAS  Google Scholar 

  20. Jin Q, Lu B, Pan Y, Tao X, Himmelhaver C, Shen Y, Gu S, Zeng Y, Li X (2019) Novel porous ceramic sheet supported metal reactors for continuous-flow catalysis. Catal Today. https://doi.org/10.1016/j.cattod.2019.12.006

    Article  Google Scholar 

  21. ABNT (2011) NBR 9778—argamassa e concreto endurecidos-Determinação da absorção de água, índice de vazios e massa específica., Assoc Bras Normas Técnicas

    Google Scholar 

  22. ABNT (2007) Nbr 5739 :2007 Concreto-Ensaios de compressão de corpos-de-prova cilíndricos, Assoc. Bras. Normas Técnicas

    Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies CNPq, CAPES, and FAPERJ for the support provided to this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Marvila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marvila, M.T. et al. (2021). Study of Pathologies in Alkali-Activated Materials Based on Slag. In: Li, J., et al. Characterization of Minerals, Metals, and Materials 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65493-1_53

Download citation

Publish with us

Policies and ethics