Skip to main content

Urban Microclimate and Building Energy Simulation Coupling Techniques

  • Chapter
  • First Online:
Urban Microclimate Modelling for Comfort and Energy Studies

Abstract

This chapter presents a review bringing a critical overview of the different ways in which the urban microclimate is currently considered in building design simulations. Therefore, different building energy models (BEMs) and urban climate models (UCMs) are presented. The ways these tools communicate are presented and the impact of UHI and the microclimate is assessed. For example, when conducting simulations neglecting the UHI, the variations can range from 10% to 200% for cooling demand and from 3% to 89% for heating demand with respect to simulations considering the UHI. Microclimate boundary conditions show to reduce loads by 130% for heating and 25% for cooling. The remaining scientific obstacles for better consideration of the urban climate context affecting the BEMs are discussed in this chapter. Some findings are the following: in some papers the boundary conditions of the BEM are only partially corrected; the BEM does not systematically introduce a feedback to the UCM; the simulation for a coupling project is usually launched for some days but longer simulation periods are necessary for an appropriate design of bioclimatic buildings. This could be done with parametric UCM tools. Future work should be about how to validate with experimental measurements the co-simulation results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The model physics is described in detail in Chap. 13 by Musy, Azam, Guernouti, Morille and Rodler.

  2. 2.

    https://bigladdersoftware.com/epx/docs/8-8/input-output-reference/group-advanced-surface-concepts.html#surfacePropertysurroundingSurfaces.

References

  • Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V., & Evins, R. (2015). A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews, 52, 1391–1404. https://doi.org/10.1016/j.rser.2015.07.123.

    Article  Google Scholar 

  • Bouyer, J., Inard, C., & Musy, M. (2011). Microclimatic coupling as a solution to improve building energy simulation in an urban context. Energy and Buildings, 43, 1549–1559. https://doi.org/10.1016/j.enbuild.2011.02.010.

    Article  Google Scholar 

  • Bozonnet, E. (2006). Impact des microclimats urbains sur la demande énergétique des bâtiments—Cas de la rue canyon. PhD.

    Google Scholar 

  • Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13, 373–384. https://doi.org/10.1016/S1364-8152(98)00042-5.

    Article  Google Scholar 

  • Bueno, B., Norford, L., Pigeon, G., & Britter, R. (2011). Combining a detailed building energy model with a physically-based urban canopy model. Boundary-Layer Meteorology, 140, 471–489. https://doi.org/10.1007/s10546-011-9620-6.

    Article  Google Scholar 

  • Bueno, B., Hidalgo, J., Pigeon, G., Norford, L., & Masson, V. (2013a). Calculation of air temperatures above the urban canopy layer from measurements at a rural operational weather station. Journal of Applied Meteorology and Climatology, 52, 472–483. https://doi.org/10.1175/JAMC-D-12-083.1.

    Article  Google Scholar 

  • Bueno, B., Norford, L., Hidalgo, J., & Pigeon, G. (2013b). The urban weather generator. Journal of Building Performance Simulation, 6, 269–281. https://doi.org/10.1080/19401493.2012.718797.

    Article  Google Scholar 

  • Castaldo, V. L., Pisello, A. L., Piselli, C., Fabiani, C., Cotana, F., & Santamouris, M. (2018). How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy. Renewable Energy, 127, 920–935. https://doi.org/10.1016/j.renene.2018.04.090.

    Article  Google Scholar 

  • Ciancio, V., Falasca, S., Golasi, I., Curci, G., Coppi, M., & Salata, F. (2018). Influence of input climatic data on simulations of annual energy needs of a building: EnergyPlus and WRF modeling for a case study in Rome (Italy). Energies, 11, 2835. https://doi.org/10.3390/en11102835.

    Article  Google Scholar 

  • Coccolo, S., Kämpf, J., Mauree, D., & Scartezzini, J.-L. (2018). Cooling potential of greening in the urban environment, a step further towards practice. Sustainable Cities and Society, 38, 543–559. https://doi.org/10.1016/j.scs.2018.01.019.

    Article  Google Scholar 

  • Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., Strand, R. K., Liesen, R. J., Fisher, D. E., & Witte, M. J. (2001). EnergyPlus: Creating a new generation building energy simulation program. Energy and Buildings, 33, 319–331.

    Article  Google Scholar 

  • de Sturler, E., Hoeflinger, J., Kalé, L., & Bhandarkar, M. (2000). A new approach to software integration frameworks for multi-physics simulation codes. In Conference Paper in IFIP Advances in Information and Communication Technology, Ottawa, Canada (pp. 87–104). https://doi.org/10.1007/978-0-387-35407-1_6.

  • Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Liu, B., Halverson, M., Winiarski, D., Rosenberg, M., Yazdanian, M., Huang, J., & Huang, J. (2011). U.S. Department of Energy commercial reference building models of the national building stock. Technical report, TP-5500-46861, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  • Dorer, V., Allegrini, J., Orehounig, K., Moonen, P., Upadhyay, J., Kaempf, J., & Carmeliet, J. (2013). Modelling the urban microclimate and its impact on the energy demand of buildings and building clusters. In IBPSA (pp. 3483–3489).

    Google Scholar 

  • Erell, E., & Williamson, T. (2006). Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station. International Journal of Climatology, 26, 1671–1694. https://doi.org/10.1002/joc.1328.

    Article  Google Scholar 

  • Goffart, J., Mara, T., & Wurtz, E. (2017). Generation of stochastic weather data for uncertainty and sensitivity analysis of a low-energy building. Journal of Building Physics, 41, 41–57. https://doi.org/10.1177/1744259116668598.

    Article  Google Scholar 

  • Guattari, C., Evangelisti, L., & Balaras, C. A. (2018). On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy). Energy and Buildings, 158, 605–615. https://doi.org/10.1016/j.enbuild.2017.10.050.

    Article  Google Scholar 

  • Hensen, J. L. M. (1999). A comparison of coupled and de-coupled solutions for temperature and air flow in a building. ASHRAE Transactions, 105(2), 962–969.

    Google Scholar 

  • Johnston, D., Miles-Shenton, D., & Farmer, D. (2015). Quantifying the domestic building fabric ‘performance gap’. Building Services Engineering Research and Technology, 36, 614–627. https://doi.org/10.1177/0143624415570344.

    Article  Google Scholar 

  • Klein, S., Duffie, J., Mitchell, J., Kummer, J., Thornton, J., Bradley, D., & Arias, D. (2017). TRNSYS 17. A transient system simulation program (Mathematical reference) (Vol. 4). Madison, WI: Solar Energy Laboratory, University of Wisconsin.

    Google Scholar 

  • Kolokotroni, M., Zhang, Y., & Watkins, R. (2007). The London heat island and building cooling design. Solar Energy, 81(1), 102–110.

    Article  Google Scholar 

  • Lac, C., Chaboureau, P., Masson, V., Pinty, P., Tulet, P., Escobar, J., Leriche, M., Barthe, C., Aouizerats, B., Augros, C., et al. (2017). Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development Discussions (pp. 1929–1969).

    Google Scholar 

  • Lauzet, N., Morille, B., Leduc, T., & Musy, M. (2017). What is the required level of details to represent the impact of the built environment on energy demand? Procedia Environmental Sciences, Sustainable Synergies from Buildings to the Urban Scale, 38, 611–618. https://doi.org/10.1016/j.proenv.2017.03.140.

    Article  Google Scholar 

  • Lauzet, N., Rodler, A., Musy, M., Azam, M.-H., Guernouti, S., Mauree, D., & Colinart, T. (2019). How building energy models take the local climate into account in an urban context—A review. Renewable and Sustainable Energy Reviews, 116, 109390. https://doi.org/10.1016/j.rser.2019.109390.

    Article  Google Scholar 

  • Li, X., Zhou, Y., Yu, S., Jia, G., Li, H., & Li, W. (2019). Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 174, 407–419. https://doi.org/10.1016/j.energy.2019.02.183.

    Article  Google Scholar 

  • Malys, L., Musy, M., & Inard, C. (2015). Microclimate and building energy consumption: Study of different coupling methods. Advances in Building Energy Research, 9, 151–174. https://doi.org/10.1080/17512549.2015.1043643.

    Article  Google Scholar 

  • Marija, T., & Jan, H. (2006). Model and tool requirements for co-simulation of buildings performance. In Proceedings of the 15th IASTED International Conference on Applied Simulation and Modelling 7.

    Google Scholar 

  • Marija, T., Michael, W., & Jan, H. (2007). Comparison of co-simulation approaches for building and HVAC/R system simulation. In Proceedings of the 10th IBPSA Building Simulation Conference, (pp. 1418–1425).

    Google Scholar 

  • Martilli, A., Clappier, A., & Rotach, M. W. (2002). An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorology, 104, 261–304. https://doi.org/10.1023/A:1016099921195.

    Article  Google Scholar 

  • Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology, 94, 357–397. https://doi.org/10.1023/A:1002463829265.

    Article  Google Scholar 

  • Mauree, D., Blond, N., Kohler, M., & Clappier, A. (2017). On the coherence in the boundary layer: Development of a canopy interface model. Frontiers in Earth Science, 4. https://doi.org/10.3389/feart.2016.00109.

  • Mauree, D., Blond, N., & Clappier, A. (2018). Multi-scale modeling of the urban meteorology: Integration of a new canopy model in the WRF model. Urban Climate, 26, 60–75. https://doi.org/10.1016/j.uclim.2018.08.002.

    Article  Google Scholar 

  • Merlier, L., Frayssinet, L., Kuznik, F., Rusaouen, G., Johannes, K., Hubert, J.-L., & Milliez, M. (2017). Analysis of the (urban) microclimate effects on the building energy behaviour. In Proceedings of the 15th IBPSA Conference, San Francisco, CA, USA.

    Google Scholar 

  • Merlier, L., Frayssinet, L., Johannes, K., & Kuznik, F. (2019a). On the impact of local microclimate on building performance simulation. Part II: Effect of external conditions on the dynamic thermal behavior of buildings. Build Simul, 12, 747–757.

    Article  Google Scholar 

  • Merlier, L., Frayssinet, L., Johannes, K., & Kuznik, F. (2019b). On the impact of local microclimate on building performance simulation. Part I: Prediction of building external conditions. Build Simul, 12, 735–746.

    Article  Google Scholar 

  • Miller, C., Thomas, D., Kämpf, J., & Schlueter, A. (2018). Urban and building multiscale co-simulation: Case study implementations on two university campuses. Journal of Building Performance Simulation, 11, 309–321. https://doi.org/10.1080/19401493.2017.1354070.

    Article  Google Scholar 

  • Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat island—Abilities and limitations. Building and Environment, 45, 2192–2201. https://doi.org/10.1016/j.buildenv.2010.04.001.

    Article  Google Scholar 

  • Musy, M., Malys, L., Morille, B., & Inard, C. (2015). The use of SOLENE-microclimate model to assess adaptation strategies at the district scale. Urban Climate, 14, 213–223.

    Article  Google Scholar 

  • Oke, T. R. (2002). Boundary layer climates (2nd ed.). London: Routledge.

    Book  Google Scholar 

  • Palme, M., Inostroza, L., Villacreses, G., Lobato, A., & Carrasco, C. (2017). Urban weather data and building models for the inclusion of the urban heat island effect in building performance simulation. Data in Brief, 14, 671–675. https://doi.org/10.1016/j.dib.2017.08.035.

    Article  Google Scholar 

  • Pappaccogli, G., Giovannini, L., Cappelletti, F., & Zardi, D. (2018). Challenges in the application of a WRF/urban-TRNSYS model chain for estimating the cooling demand of buildings: A case study in Bolzano (Italy). Science and Technology for the Built Environment, 24, 529–544. https://doi.org/10.1080/23744731.2018.1447214.

    Article  Google Scholar 

  • Peuportier, B., & Sommereux, I. B. (1990). Simulation tool with its expert interface for the thermal design of multizone buildings. International Journal of Solar Energy, 8, 109–120.

    Article  Google Scholar 

  • Plessis, G., Kaemmerlen, A., & Lindsay, A. (2014). BuildSysPro: A Modelica library for modelling buildings and energy systems. In Proceedings of the 10th International Modelica Conference; March 10–12, 2014, Lund, Sweden (pp. 1161–1169). Linköping: Linköping University Electronic Press.

    Chapter  Google Scholar 

  • Rabouille, M., Wurtz, E., & Perrotin, P. (2013). Analysis of dynamic thermal simulation for refurbishment. In IBPSA (pp. 358–365).

    Google Scholar 

  • Robinson, D., Haldi, F., Kämpf, J., Leroux, P., Perez, D., Rasheed, A., & Wilke, U. (2009). CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In Proc. Building Simulation (pp. 1614–1627).

    Google Scholar 

  • Rotach, M. W., Vogt, R., Bernhofer, C., Batchvarova, E., Christen, A., Clappier, A., Feddersen, B., Gryning, S.-E., Martucci, G., Mayer, H., Mitev, V., Oke, T. R., Parlow, E., Richner, H., Roth, M., Roulet, Y.-A., Ruffieux, D., Salmond, J. A., Schatzmann, M., & Voogt, J. A. (2005). BUBBLE—An urban boundary layer meteorology project. Theoretical and Applied Climatology, 81, 231–261. https://doi.org/10.1007/s00704-004-0117-9.

    Article  Google Scholar 

  • Salvati, A., Coch Roura, H., & Cecere, C. (2017a). Assessing the urban heat island and its energy impact on residential buildings in Mediterranean climate: Barcelona case study. Energy and Buildings, 146, 38–54. https://doi.org/10.1016/j.enbuild.2017.04.025.

    Article  Google Scholar 

  • Salvati, A., Coch, H., & Morganti, M. (2017b). Effects of urban compactness on the building energy performance in Mediterranean climate. Energy Procedia, 122, 499–504. https://doi.org/10.1016/j.egypro.2017.07.303.

    Article  Google Scholar 

  • Salvati, A., Palme, M., Chiesa, G., & Kolokotroni, M. (2020). Built form, urban climate and building energy modelling: Case-studies in Rome and Antofagasta. Journal of Building Performance Simulation, 13, 209–225. https://doi.org/10.1080/19401493.2019.1707876.

    Article  Google Scholar 

  • Santamouris, M. (2014). On the energy impact of urban heat island and global warming on buildings. Energy and Buildings, 82, 100–113. https://doi.org/10.1016/j.enbuild.2014.07.022.

    Article  Google Scholar 

  • Santamouris, M., Papanikolaou, N., Livada, I., Koronakis, I., Georgakis, C., Argiriou, A., & Assimakopoulos, D. N. (2001). On the impact of urban climate on the energy consumption of buildings. Solar Energy, 70, 201–216. https://doi.org/10.1016/S0038-092X(00)00095-5.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-H., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 2. DTIC Document.

    Google Scholar 

  • Street, M., Reinhart, C., Norford, L., & Ochsendorf, J. (2013). Urban heat island in Boston: An evaluation of urban air temperature models for predicting building energy use. In Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association in Chambéry, France (p. 1022).

    Google Scholar 

  • Sun, Y., & Augenbroe, G. (2014). Urban heat island effect on energy application studies of office buildings. Energy and Buildings, 77, 171–179. https://doi.org/10.1016/j.enbuild.2014.03.055.

    Article  Google Scholar 

  • Tsoka, S., Tsikaloudaki, K., & Theodosiou, T. (2019). Coupling a building energy simulation tool with a microclimate model to assess the impact of cool pavements on the building’s energy performance. application in a dense residential area. Sustainability, 11, 2519. https://doi.org/10.3390/su11092519.

    Article  Google Scholar 

  • Vallati, A., Mauri, L., & Colucci, C. (2018). Impact of shortwave multiple reflections in an urban street canyon on building thermal energy demands. Energy and Buildings, 174, 77–84.

    Article  Google Scholar 

  • Vanpachtenbeke, M., Van De Walle, W., Janssen, H., & Roels, S. (2015). Analysis of coupling strategies for building simulation programs. In Energy Procedia, 6th International Building Physics Conference, IBPC 2015 (Vol. 78, pp. 2554–2559). https://doi.org/10.1016/j.egypro.2015.11.276.

  • Walter, E., & Kämpf, J. H. (2015). A verification of CitySim results using the BESTEST and monitored consumption values. In Proceedings of the 2nd Building Simulation Applications Conference (pp. 215–222).

    Google Scholar 

  • Wetter, M. (2011). Co-simulation of building energy and control systems with the building controls virtual test bed. Journal of Building Performance Simulation, 4, 185–203. https://doi.org/10.1080/19401493.2010.518631.

    Article  Google Scholar 

  • Yang, X., Zhao, L., Bruse, M., & Meng, Q. (2012). An integrated simulation method for building energy performance assessment in urban environments. Energy and Buildings, 54, 243–251. https://doi.org/10.1016/j.enbuild.2012.07.042.

    Article  Google Scholar 

  • Yang, X., Jin, T., Yao, L., Zhu, C., & Peng, L. L. (2017). Assessing the impact of urban heat island effect on building cooling load based on the local climate zone scheme. Procedia Engineering, 205, 2839–2846. https://doi.org/10.1016/j.proeng.2017.09.904.

    Article  Google Scholar 

  • Zhai, Z. (2004). Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics program. Massachusetts Institute of Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Auline Rodler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodler, A. et al. (2021). Urban Microclimate and Building Energy Simulation Coupling Techniques. In: Palme, M., Salvati, A. (eds) Urban Microclimate Modelling for Comfort and Energy Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-65421-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65421-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65420-7

  • Online ISBN: 978-3-030-65421-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics