Skip to main content

Carbon Dust—Its Short-Term Influence on Potroom Operations During Anode Change

  • Conference paper
  • First Online:
Light Metals 2021

Abstract

Carbon dust refers to carbon particles, originating from carbon inputs into the smelting process like anodes, that float on top of the bath, below anodes or suspended in the bath. The phenomenon has a deleterious effect on the specific energy consumption of cells and can lead to anode deformations, hot cells out of the process window and stoppage of cells. Trials were conducted in the TRIMET Hamburg Smelter focusing on the effect of dust at anode changes. The conditions were chosen to be best and worst practice as assessed by a visual carbon dust assessment in the tap hole. Contrasting with published literature, there was no relation in the experiments between spike formation and carbon dust in anodes after 8 h. Anodes set in cells with a high carbon level in the tap hole did not behave differently when compared to anodes with a low carbon dust content in the tap hole. Samples obtained from the frozen bath layer underneath the anodes showed carbon contents in the range of 0.0315–6.29%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Bugnion and J.-C. Fischer, ‘Effect of carbon dust on the electrical resistivity of cryolite bath’, in Light Metals 2016, Springer, 2016, pp. 587–591.

    Google Scholar 

  2. H. Gudmundsson, ‘Improving anode cover material quality at Nordural—Quality tools and measures’, in Essential Readings in Light Metals, Springer, 2016, pp. 639–644.

    Google Scholar 

  3. S. Pietrzyk and J. Thonstad, ‘Influence of carbon dust in the electrolyte on aluminium electrolysis parameters’, ICSOBA Proc., pp. 659–666, 2015.

    Google Scholar 

  4. E. Cutshall, ‘Influence of anode baking temperature and current density upon carbon sloughing’, Light Met. 1986, vol. 2, pp. 629–637, 1986.

    Google Scholar 

  5. V. Buzunov, V. Shestakov, P. Polyakov, V. Tikhomirov, and S. Resmyatov, ‘Statistical analysis of operation of electrolyzers for aluminum production’, Tsvetn Met, vol. 6, pp. 30–33, 1994.

    Google Scholar 

  6. T. Foosnæs, T. Naterstad, M. Bruheim, and K. Grjotheim, ‘Light Metals 1986’, in 115th Annual Meeting of AIME, New Orleans, LA, 1986, pp. 729–38.

    Google Scholar 

  7. P. Polyakov, A. Vlasov, Y. G. Mikhalev, and V. Yanov, ‘On Cone Formation on Burnt Anode Face in Aluminum Electrolyzers’, Metallurgist, vol. 60, no. 9–10, pp. 1087–1093, 2017.

    Google Scholar 

  8. R. C. Perruchoud, K. L. Hulse, W. K. Fischer, W. Schmidt-Hatting, and U. Heinzmann, ‘Dust generation and accumulation for changing anode quality and cell parameters’, Light Metals 1999, Warrendale PA, pp. 509–516, 1999.

    Google Scholar 

  9. B. Sadler and B. Welch, ‘Reducing carbon dust?–needs and possible directions’, in 9th Australasian Aluminium Smelting Technology Conference and Workshops, Terrigal, Australia, 2007, p. 1.

    Google Scholar 

  10. J. Lhuissier, L. Bezamanifary, M. Gendre, and M.-J. Chollier, ‘Use of under-calcined coke for the production of low reactivity anodes’, in Essential Readings in Light Metals, Springer, 2016, pp. 109–113.

    Google Scholar 

  11. W. K. Fischer, F. Keller, and R. Perruchoud, ‘Interdependence between anode net consumption and pot design, pot operating parameters and anode properties’, Light Met., vol. 681, 1991.

    Google Scholar 

  12. A. Zoukel, P. Chartrand, and G. Soucy, ‘Study of aluminum carbide formation in Hall-Heroult electrolytic cells’, Light Met., vol. 2009, pp. 1123–1128, 2009.

    Google Scholar 

  13. H. Gudbrandsen, Sterten, and R. Ødegård, ‘Cathodic dissolution of carbon in cryolitic melts’, Light Met., 1992, pp. 521–528, 1992.

    Google Scholar 

  14. O. E. Frosta, ‘Anode Cover Material - Impact on anodes’, presented at the 6th Icelandic Rodding Shop Conference, 2014.

    Google Scholar 

  15. M. W. Meier, R. C. Perruchoud, and W. K. Fischer, ‘Production and performance of slotted anodes’, Light Met., pp. 277–282, 2007.

    Google Scholar 

  16. A. Fitchett, D. Morgan, and B. Welch, ‘The reduction in anode airburn with protective covers’, in Essential Readings in Light Metals, Springer, 2016, pp. 663–666.

    Google Scholar 

  17. N. Bird, B. McEnaney, and B. Sadler, ‘Some Practical Consequence of Analyses of the Carboxy and Airburn Reactions of Anode Carbons’, Light Met. 1990, pp. 467–471, 1990.

    Google Scholar 

  18. W. Fischer and R. Perruchoud, ‘Factors Influencing the Carboxy- and Air-Reactivity Behavior of Prebaked Anodes in Hall–Heroult Cells’, Light Met. 1986, vol. 2, pp. 575–580, 1986.

    Google Scholar 

  19. D. Brooks and V. Bullough, ‘Factors in the design of reduction cell anodes’, Light Met. 1984, pp. 961–976, 1984.

    Google Scholar 

  20. R. W. Peterson, ‘Temperature and voltage measurements in Hall cell anodes’, in Essential Readings in Light Metals, Springer, 2016, pp. 500–508.

    Google Scholar 

  21. F. Aune, M. Bugge, H. Kvande, T. Ringstad, and S. Rolseth, ‘Thermal effects by anode changing in prebake reduction cells’, Minerals, Metals and Materials Society, Warrendale, PA (United States), 1996.

    Google Scholar 

  22. B. Sadler and S. Algie, ‘Macrostructural assessment of sub-surface carboxy attack in anodes’, in JOURNAL OF METALS, 1988, vol. 40, pp. 36–36.

    Google Scholar 

  23. B. Patra and A. Palchowdhury, ‘Improvement in oxidation Behaviour of Prebake anodes used in NALCO smelter plant’, 2017.

    Google Scholar 

  24. A. Jassim, N. Al Jabri, S. A. Rabbaa, E. G. Mofor, and J. Jamal, ‘Innovative Anode Coating Technology to Reduce Anode Carbon Consumption in Aluminum Electrolysis Cells’, in Light Metals 2019, Springer, 2019, pp. 745–752.

    Google Scholar 

  25. R. Odegard and H. Gudbrandsen, ‘A Study of spikes from industrial hall-herould anodes’, Aluminium, vol. 68, no. 1, pp. 56–59, 1992.

    Google Scholar 

  26. B. A. Sadler, ‘Critical issues in anode production and quality to avoid anode performance problems’, 2015.

    Google Scholar 

  27. R. Ødegård and S. H. Avard Midtlyng, ‘Electrochemical and chemical reactivity of carbon electrodeposited from cryolitic melts containing aluminum carbide’, J. Electrochem. Soc., vol. 138, no. 9, pp. 2612–2617, 1991.

    Google Scholar 

  28. K. Solbu, ‘Study on the deformation of prebaked anodes in aluminium electrolysis’, Diploma thesis, Institute for Material Technology and Technical Electrochemistry, Norway’s University of Technical and Natural Sciences, NTNU, Trondheim, 1999.

    Google Scholar 

  29. A. T. Tabereaux, ‘Maximum anode effect voltage’, Light Met., vol. 207, pp. 405–410, 2007.

    Google Scholar 

  30. W. Kristensen, G. Höskuldsson, and O. Jonsson, ‘Improvements in Smelter Performance through operating practices and process control’, in Proceedings of the 8th Australasian Aluminium Smelting Technology Conference and Worskhop, Yeppoon, Australia, 2004, pp. 3–8.

    Google Scholar 

  31. K. Khaji and M. Al Qassemi, ‘The Role of Anode Manufacturing Processes in Net Carbon Consumption’, Metals, vol. 6, no. 6, p. 128, 2016.

    Google Scholar 

  32. K. Grjotheim, Introduction to aluminium electrolysis: understanding the Hall-Hérloult process. Aluminium-Verlag, 1993.

    Google Scholar 

  33. M. Ali and A. Omran, ‘Anode spike formation in prebaked aluminium reduction cells’, Al-Azhar Univ. Eng. J. JAUES Vol 7 No 4 Dec, p. 29, 2012.

    Google Scholar 

  34. N. Wai-Poi, B. Rolofs, and C. A. Voerde, ‘Impact of energy management and superheat on anode spike formation’, Light Met., pp. 535–540, 2001.

    Google Scholar 

  35. J. Antille and R. Von Kaenel, ‘Using a magnetohydrodynamic model to analyze pot stability in order to identify an abnormal operating condition’, in Essential Readings in Light Metals, Springer, 2016, pp. 367–372.

    Google Scholar 

  36. H. Gudmundsson, ‘Anode Dusting from a Potroom Perspective at Nordural and Correlation with Anode Properties’, in Light Metals 2011, Springer, 2011, pp. 471–476.

    Google Scholar 

  37. M. P. Taylor, A. Mulder, M. J. Hautus, J. J. Chen, and M. Stam, ‘Analysis of human work decisions in an aluminium smelter’, Int. J. Decis. Sci. Risk Manag., vol. 2, no. 1–2, pp. 46–65, 2010.

    Google Scholar 

  38. V. Potocnik, A. Arkhipov, N. Ahli, and A. Alzarooni, ‘Measurement of DC busbar currents in aluminium smelters’, in Proceedings of 35 th International ICSOBA Conference, Hamburg, Germany, Travaux, 2017, vol. 46, pp. 1113–1128.

    Google Scholar 

  39. V. Gusberti, D. S. Severo, A. F. Schneider, E. C. Pinto, and A. C. Vilela, ‘Modeling the effect of the anode change sequence with a non-linear shallow water stability model’, Light Met., pp. 157–164, 2007.

    Google Scholar 

  40. M. Jensen, K. Kalgraf, T. Nordbo, and T. Pedersen, ‘ACD measurement and theory’, in Light Metals, TMS San Francisco, CA, 2009, pp. 455–459.

    Google Scholar 

  41. M. W. Meier, Anodes—From the raw materials to the pot performance—Proceedings of 8th International Training Course 2018, 2018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Dechent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dechent, M., Taylor, M.P., Meier, R., Tiedemann, L., Meier, M., Friedrich, B. (2021). Carbon Dust—Its Short-Term Influence on Potroom Operations During Anode Change. In: Perander, L. (eds) Light Metals 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65396-5_55

Download citation

Publish with us

Policies and ethics