Skip to main content

Conductivity of AlCl3-BMIC Ionic Liquid Mixtures Containing TiCl4 at Different Temperatures and Molar Ratios

  • Conference paper
  • First Online:
TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

The conductivity of the mixture of 1-butyl-3-methylimidazolium chloride (BMIC) ionic liquid with aluminum chloride (AlCl3) and titanium chloride (TiCl4) are systematically investigated over a range of temperature (70–110 °C) using the electrochemical impedance spectroscopy (EIS) method. The molar ratios of the components are changed to study the effect of molar ratio on the conductivity. The conductivity data are plotted against temperature to check whether it obeys the Arrhenius law. The activation energy and the density are calculated. The conductivity of the solution increases with increasing temperature for every composition. For varying molar ratio, conductivity increases with increasing TiCl4 content up to a certain composition then starts to decrease for each temperature. At room temperature, density of the solution increases with increasing TiCl4 content in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580. https://doi.org/10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  2. Huddleston JG, Visser AE, Reichert WM et al (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164. https://doi.org/10.1039/b103275p

    Article  CAS  Google Scholar 

  3. Sakaebe H, Matsumoto H, Tatsumi K (2007) Application of room temperature ionic liquids to Li batteries. Electrochim Acta 53:1048–1054. https://doi.org/10.1016/j.electacta.2007.02.054

    Article  CAS  Google Scholar 

  4. Andriyko YO, Reischl W, Nauer GE (2009) Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J Chem Eng Data 54:855–860. https://doi.org/10.1021/je800636k

    Article  CAS  Google Scholar 

  5. Mahapatro A, Suggu SK (2018) Modeling and simulation of electrodeposition: effect of electrolyte current density and conductivity on electroplating thickness. Adv Mater Sci. https://doi.org/10.15761/ams.1000143

  6. Vila J, Ginés P, Rilo E et al (2006) Great increase of the electrical conductivity of ionic liquids in aqueous solutions. Fluid Phase Equilib 247:32–39. https://doi.org/10.1016/j.fluid.2006.05.028

    Article  CAS  Google Scholar 

  7. Zhang Q-G, Sun S-S, Pitula S et al (2011) Electrical conductivity of solutions of ionic liquids with methanol, ethanol, acetonitrile, and propylene carbonate. J Chem Eng Data 56:4659–4664. https://doi.org/10.1021/je200616t

    Article  CAS  Google Scholar 

  8. Wileńska D, Anusiewicz I, Freza S et al (2014) Predicting the viscosity and electrical conductivity of ionic liquids on the basis of theoretically calculated ionic volumes. Mol Phys 113:630–639. https://doi.org/10.1080/00268976.2014.964344

    Article  CAS  Google Scholar 

  9. Leys J, Wübbenhorst M, Menon CP et al (2008) Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J Chem Phys 128:064509. https://doi.org/10.1063/1.2827462

    Article  CAS  Google Scholar 

  10. Shinde PS, Ahmed AN, Nahian MK, Peng Y, Reddy RG (2020) Conductivity of 1-Ethyl-3-Methylimidazolium Chloride (EMIC) and Aluminum Chloride (AlCl3) Ionic Liquids at Different Temperatures and AlCl3 Mole Fractions. ECS Trans 98:129–139. https://doi.org/10.1149/09810.0129ecst

  11. Middlemiss LA, Rennie AJ, Sayers R, West AR (2020) Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep 6:232–241. https://doi.org/10.1016/j.egyr.2020.03.029

    Article  Google Scholar 

  12. Encinas-Sánchez V, Miguel MD, Lasanta M et al (2019) Electrochemical impedance spectroscopy (EIS): an efficient technique for monitoring corrosion processes in molten salt environments in CSP applications. Sol Energy Mater Sol Cells 191:157–163. https://doi.org/10.1016/j.solmat.2018.11.007

    Article  CAS  Google Scholar 

  13. Uddin M-J, Cho S-J (2018) Reassessing the bulk ionic conductivity of solid-state electrolytes. Sustain Energy Fuels 2:1458–1462. https://doi.org/10.1039/c8se00139a

    Article  CAS  Google Scholar 

  14. Wei Z, Ren Y, Wang M et al (2020) Improving the conductivity of solid polymer electrolyte by grain reforming. Nanoscale Res Lett 15:122. https://doi.org/10.21203/rs.3.rs-17250/v1

    Article  CAS  Google Scholar 

  15. Lu J, Dreisinger D (2003) Electrochemistry: ionic liquid electroprocessing of reactive metals. ACS Symp Ser 495–508. https://doi.org/10.1021/bk-2003-0856.ch039

  16. Shinde PS, Peng Y, Reddy RG (2020) Electrodeposition of titanium aluminide (TiAl) alloy from AlCl3–BMIC ionic liquid at low temperature. In: TMS 2020 149th annual meeting & exhibition supplemental proceedings. The minerals, metals & materials series, pp 1659–1667. https://doi.org/10.1007/978-3-030-36296-6_153

  17. Pradhan D, Reddy R, Lahiri A (2009) Low-temperature production of Ti-Al alloys using ionic liquid electrolytes: effect of process variables on current density, current efficiency, and deposit morphology. Metall Mater Trans B 40:114–122. https://doi.org/10.1007/s11663-008-9214-y

    Article  CAS  Google Scholar 

  18. Yuan W-L, Yang X, He L et al (2018) Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids. Front Chem. https://doi.org/10.3389/fchem.2018.00059

  19. Zheng Y, Dong K, Wang Q et al (2012) Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data 58:32–42. https://doi.org/10.1021/je3004904

    Article  CAS  Google Scholar 

  20. Ferrara C, Dall’Asta V, Berbenni V et al (2017) Physicochemical characterization of AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries. J Phys Chem C 121:26607–26614. https://doi.org/10.1021/acs.jpcc.7b07562

  21. Rosol ZP, German NJ, Gross SM (2009) Solubility, ionic conductivity and viscosity of lithium salts in room temperature ionic liquids. Green Chem 11:1453. https://doi.org/10.1039/b818176d

    Article  CAS  Google Scholar 

  22. Tong J, Wu S, Solms NV et al (2020) The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes. Front Chem. https://doi.org/10.3389/fchem.2019.00945

  23. Vila J, Ginés P, Pico J et al (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids. Fluid Phase Equilib 242:141–146. https://doi.org/10.1016/j.fluid.2006.01.022

    Article  CAS  Google Scholar 

  24. Kamavaram V (2004) Novel electrochemical refining of aluminum based materials in low temperature ionic liquid electrolytes. Ph.D. thesis, The University of Alabama

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Foundation (NSF) and ACIPCO for this research project. The authors also thank the Department of Metallurgical and Materials Engineering, The University of Alabama, for providing the experimental and analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahian, M.K., Ahmed, A.N., Shinde, P.S., Reddy, R.G. (2021). Conductivity of AlCl3-BMIC Ionic Liquid Mixtures Containing TiCl4 at Different Temperatures and Molar Ratios. In: TMS 2021 150th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65261-6_90

Download citation

Publish with us

Policies and ethics