Skip to main content

Digitization and Dental Lasers

  • Chapter
  • First Online:
Digitization in Dentistry

Abstract

Laser dentistry is beginning a new era of legitimacy, kindled by the versatility and broad utility of all-tissue lasers, which are welcome additions to the original instruments, which could only perform soft tissue surgeries. The pinnacle of research, investigation, and manufacturing, these lasers extend the broadest capabilities across all disciplines in the dentistry. Now the dentist has opportunities to integrate laser technology, which can qualify him or her to offer dentistry with better clinical outcomes, more patient comfort, and speedier recovery. The laser can considerably expand the capacity of a dentist to discuss the clinical needs of the patient and do more justice both clinically and cosmetically. The interests of a versatile laser instrument are clearly manifold. The fact is a single instrument has been made for hard tissue, soft tissue, and bone, as well as corresponding therapies for the root canal, oral surgery, and periodontics, applicable to nearly every phase of practicing dentistry. One of the prevalent dislikes of patients concerning their dental occurrences is the fear of the high-pitched, high-speed drilling sound. The all-tissue laser produces a soft puffing to a crisp popping sound, which is overwhelmingly favored by most patients. The laser preparation does not generate the formation of a smear layer or debris, and can in fact eliminate any such layer left behind through conventional instruments. This is meaningful in assembling a very clean interface with the composite bonding agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker S. Surgical lasers and hard dental tissue. Br Dent J. 2007;202:445–54.

    Article  PubMed  Google Scholar 

  2. Strauss RA, Fallon SD. Lasers in contemporary oral and maxillofacial surgery. Dent Clin N Am. 2004;48:861–88.

    Article  PubMed  Google Scholar 

  3. de Freitas LF, Hamblin MR. Proposed mechanisms of Photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22:348–64.

    Article  Google Scholar 

  4. Bennaim M, Porato M, Jarleton A, Hamon M, Carroll JD, Gommeren K, Balligand M. Preliminary evaluation of the effects of photobiomodulation therapy and physical rehabilitation on early postoperative recovery of dogs undergoing hemilaminectomy for treatment of thoracolumbar intervertebral disk disease. Am J Vet Res. 2017;78:195–206.

    Article  PubMed  Google Scholar 

  5. Jassim Mohammed Al Timimi Z, Saleem Ismail Alhabeel M. Laser dental treatment techniques. In: Prev. Detect. Manag. Oral Cancer. IntechOpen 2019; 1–16.

    Google Scholar 

  6. Zahara AT. Clinical evaluation of scalpel Er: YAG Laser 2940nm and conventional surgery incisions wound after Oral soft tissue biopsy. Bangladesh Med Res Counc Bull. 2018;43:149.

    Article  Google Scholar 

  7. Houssein HAA, Jaafar MSS, Ali Z, Timimi ZA, Mustafa FHH. Study of Hematocrit in relation with age and gender using low power helium—neon laser irradiation. In: Ting H-N, editor. 5th Kuala Lumpur Int. Conf. Biomed . Eng. 2011. Berlin, Heidelberg: IFMBE Proc. Springer; 2011. p. 463–6.

    Chapter  Google Scholar 

  8. Al Timimi Z, Jaafar M, Zubir Mat Jafri M. Photodynamic therapy and green laser blood therapy. Glob J Med Res. 2011;11:22–8.

    Google Scholar 

  9. Houssein HAA, Jaafar MS, Ali Z, Timimi ZA, Mustafa FH. Study of Hematocrit in relation with age and gender using low power helium—neon laser irradiation. In: Osman NAA, Abas WABW, Wahab AKA, Ting HN, editors. 5th Kuala Lumpur Int. Conf. Biomed. Eng ; 2011. p. 463–6.

    Google Scholar 

  10. Al-Timimi Z, Mustafa F. Recognizing the effectiveness of the diode laser 850nm on stimulate the proliferation and viability of mice mesenchymal stem cells derived from bone marrow and adipose tissue. Iraqi J Vet Sci. 2019;32:285–90.

    Article  Google Scholar 

  11. Zahra A-T. Biological effects of yellow laser-induced of cell survival: structural DNA damage comparison is undergoing ultraviolet radiation photocoagulation. Int J Eng Res Gen Sci. 2014;2:544–8.

    Google Scholar 

  12. Eells JT, Wong-Riley MTT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4:559–67.

    Article  PubMed  Google Scholar 

  13. Chiari S. Photobiomodulation and lasers. Front Oral Biol 2015; 118–123.

    Google Scholar 

  14. Tang E, Arany P. Photobiomodulation and implants: implications for dentistry. J Periodontal Implant Sci. 2013; https://doi.org/10.5051/jpis.2013.43.6.262.

  15. Myers TD, Sulewski JG. Evaluating dental lasers: what the clinician should know. Dent Clin N Am. 2004;48:1127–44.

    Article  PubMed  Google Scholar 

  16. Özcan A, Sevimay M. Laser in dentistry: review. Turkiye Klin J Dent Sci. 2016;22:122–9.

    Article  Google Scholar 

  17. Najeeb S, Khurshid Z, Zafar MS, Ajlal S. Applications of light amplification by stimulated emission of radiation (lasers) for restorative dentistry. Med Princ Pract. 2016;25:201–11.

    Article  PubMed  Google Scholar 

  18. Zahra A-T. A comparative study of determination the spectral characteristics of serum total protein among laser system and spectrophotometric: advantage and limitation of suggested methods. Curr Anal Chem. 2019;15:583–90.

    Article  Google Scholar 

  19. Aït-Ameur K, Passilly N, de Saint DR, Fromager M, Amara E-H, Boudjemai S, Doumaz D. Laser beam shaping. In: AIP Conf. Proc. AIP, pp 59–67; 2008.

    Google Scholar 

  20. Sargent M, Scully MO, Lamb WE. Laser physics. Laser Phys. 2018; https://doi.org/10.1201/9780429493515.

  21. Coluzzi DJ, Convissar RA. Laser fundamentals. In: Princ. Pract. Laser Dent. Elsevier 2011; 12–26.

    Google Scholar 

  22. Svelto O. Principles of lasers. Princ Lasers. 2010; https://doi.org/10.1007/978-1-4419-1302-9.

  23. Brückner F, Lepski D. Laser Cladding. In: Springer Ser. Mater. Sci. 2017;263–306.

    Google Scholar 

  24. Eichler HJ, Eichler J, Lux O. Optical Resonators. In: Springer Ser. Opt. Sci. 2018;231–244.

    Google Scholar 

  25. Dutta Majumdar J, Manna I. Laser processing of materials. Sadhana. 2003;28:495–562.

    Article  Google Scholar 

  26. Sciamanna M, Shore KA. Physics and applications of laser diode chaos. Nat Photonics. 2015;9:151–62.

    Article  Google Scholar 

  27. Nazemisalman B, Farsadeghi M, Sokhansanj M. Types of lasers and their applications in pediatric dentistry. J Lasers Med Sci. 2015;6:96–101.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stopp S, Deppe H, Lueth T. A new concept for navigated laser surgery. Lasers Med Sci. 2008;23:261–6.

    Article  PubMed  Google Scholar 

  29. George R, Walsh LJ. Performance assessment of novel side firing flexible optical fibers for dental applications. Lasers Surg Med. 2009;41:214–21.

    Article  PubMed  Google Scholar 

  30. George R, Walsh LJ. Performance assessment of novel side firing safe tips for endodontic applications. J Biomed Opt. 2011;16:048004.

    Article  PubMed  Google Scholar 

  31. Verma S, Chaudhari P, Maheshwari S, Singh R. Laser in dentistry: an innovative tool in modern dental practice. Natl J Maxillofac Surg. 2012;3:124.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim C, Jeon MJ, Jung JH, Yang JD, Park H, Kang HW, Lee H. Fabrication of novel bundled fiber and performance assessment for clinical applications. Lasers Surg Med. 2014;46:718–25.

    Article  PubMed  Google Scholar 

  33. Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Top. 2005;10:3–29.

    Article  Google Scholar 

  34. Coluzzi DJ. Fundamentals of dental lasers: science and instruments. Dent Clin N Am. 2004;48:751–70.

    Article  PubMed  Google Scholar 

  35. Azevedo Rodrigues LK, Nobre dos Santos M, Pereira D, Videira Assaf A, Pardi V. Carbon dioxide laser in dental caries prevention. J Dent. 2004;32:531–40.

    Article  Google Scholar 

  36. Coluzzi F, Ruggeri M. Clinical and economic evaluation of tapentadol extended release and oxycodone/naloxone extended release in comparison with controlled release oxycodone in musculoskeletal pain. Curr Med Res Opin. 2014;30:1139–51.

    Article  PubMed  Google Scholar 

  37. Chung SH, Mazur E. Surgical applications of femtosecond lasers. J Biophotonics. 2009; https://doi.org/10.1002/jbio.200910053.

  38. Romanos GE, Gupta B, Yunker M, Romanos EB, Malmstrom H. Lasers use in dental implantology. Implant Dent. 2013; https://doi.org/10.1097/ID.0b013e3182885fcc.

  39. Martens LC. Laser physics and a review of laser applications in dentistry for children. Eur Arch Paediatr Dent. 2011;12:61–7.

    Article  PubMed  Google Scholar 

  40. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM. Developments in low level light therapy (LLLT) for dentistry. Dent Mater. 2014; https://doi.org/10.1016/j.dental.2014.02.006.

  41. Smiley CJ, Tracy SL, Abt E, et al. Systematic review and meta-analysis on the nonsurgical treatment of chronic periodontitis by means of scaling and root planning with or without adjuncts. J Am Dent Assoc. 2015;146:508–24.e5

    Article  PubMed  Google Scholar 

  42. Plotino G, Cortese T, Grande NM, Leonardi DP, Di Giorgio G, Testarelli L, Gambarini G. New technologies to improve root canal disinfection. Braz Dent J. 2016; https://doi.org/10.1590/0103-6440201600726.

  43. Kuffler DP. Photobiomodulation in promoting wound healing: a review. Regen Med. 2016;11:107–22.

    Article  PubMed  Google Scholar 

  44. Houssein HAA, Jaafar MS, Ali Z, Timimi ZA, Mustafa FH. Study of hematocrit in relation with age and gender using low power Helium—Neon laser irradiation. In: IFMBE Proc. 2011;463–466.

    Google Scholar 

  45. Diam WA, Zahra A-T (2019) Characterization and fabrication of Nd:YVO4 disc laser system. In: AIP Conf. Proc. p 020009.

    Google Scholar 

  46. Zahra JMA. Impact of laser (Nd: YVO4 Crystals, 532nm) radiation on white blood cells. Iraqi Laser Scientists Journal. 2019;1(3):1–6.

    Google Scholar 

  47. Maria OM, Eliopoulos N, Muanza T. Radiation-induced Oral mucositis. Front Oncol. 2017; https://doi.org/10.3389/fonc.2017.00089.

  48. Rodríguez-Caballero A, Torres-Lagares D, Robles-García M, Pachón-Ibáñez J, González-Padilla D, Gutiérrez-Pérez JL. Cancer treatment-induced oral mucositis: a critical review. Int J Oral Maxillofac Surg. 2012;41:225–38.

    Article  PubMed  Google Scholar 

  49. Messadi DV, Younai F. Aphthous ulcers. Dermatol Ther. 2010;23:281–90.

    Article  PubMed  Google Scholar 

  50. Cui RZ, Bruce AJ, Rogers RS. Recurrent aphthous stomatitis. Clin Dermatol. 2016;34:475–81.

    Article  PubMed  Google Scholar 

  51. Najeeb S, Khurshid Z, Zohaib S, Najeeb B, Bin QS, Zafar MS. Management of recurrent aphthous ulcers using low-level lasers: a systematic review. Medicina (B Aires). 2016;52:263–8.

    Article  Google Scholar 

  52. Rola P, Doroszko A, Derkacz A. The use of low-level energy laser radiation in basic and clinical research. Adv Clin Exp Med. 2014;23:835–42.

    Article  PubMed  Google Scholar 

  53. Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331–49.

    Article  Google Scholar 

  54. Labat-gest V, Tomasi S. Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp. 2013; https://doi.org/10.3791/50370.

  55. Jamil TS, Ghaly MY, Fathy NA, Abd el-halim TA, Österlund L. Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Sep Purif Technol. 2012;98:270–9.

    Article  Google Scholar 

  56. Bartl MH, Boettcher SW, Frindell KL, Stucky GD. 3-D molecular assembly of function in Titania-based composite material systems. Acc Chem Res. 2005;38:263–71.

    Article  PubMed  Google Scholar 

  57. Eber AE, Perper M, Verne SH, Magno R, IAO ALO, ALHarbi M, Nouri K. Photodynamic therapy. In: Lasers dermatology med. Cham: Springer International Publishing; 2018. p. 261–73.

    Chapter  Google Scholar 

  58. Pretell-Mazzini J, Barton MD, Conway SA, Temple HT. Unplanned excision of soft-tissue sarcomas. J Bone Joint Surg-Am. 2015;97:597–603.

    Article  PubMed  Google Scholar 

  59. Thacker MM, Potter BK, Pitcher JD, Temple HT. Soft tissue sarcomas of the foot and ankle: impact of unplanned excision, limb salvage, and multimodality therapy. Foot Ankle Int. 2008; https://doi.org/10.3113/FAI.2008.0690.

  60. Del Fabbro M, Corbella S, Sequeira-Byron P, Tsesis I, Rosen E, Lolato A, Taschieri S. Endodontic procedures for retreatment of periapical lesions. Cochrane Database Syst Rev. 2016; https://doi.org/10.1002/14651858.CD005511.pub3.

  61. De Paula EC, Gouw-Soares S. The use of lasers for endodontic applications in dentistry. Med Laser Appl. 2001; https://doi.org/10.1078/1615-1615-00027.

  62. Asnaashari M, Safavi N. Disinfection of contaminated canals by different laser wavelengths, while performing root canal therapy. J Lasers Med Sci. 2013; https://doi.org/10.22037/2010.v4i1.3869.

  63. Quinto J, Amaral MM, Francci CE, Ana PA, Moritz A, Zezell DM. Evaluation of intra root canal Er,Cr:YSGG laser irradiation on prosthetic post adherence. J Prosthodont. 2019; https://doi.org/10.1111/jopr.12609.

  64. Okamoto CB, Bussadori SK, Prates RA, da Mota ACC, Tempestini Horliana ACR, Fernandes KPS, Motta LJ. Photodynamic therapy for endodontic treatment of primary teeth: a randomized controlled clinical trial. Photodiagn Photodyn Ther. 2020; https://doi.org/10.1016/j.pdpdt.2020.101732.

  65. Chen M. The development of laser surgery and medicine in China. 2004 Shanghai Int Conf Laser Med Surg. 2005. doi:https://doi.org/10.1117/12.639086.

  66. Jhingan P, Sandhu M, Jindal G, Goel D, Sachdev V. An in-vitro evaluation of the effect of 980 nm diode laser irradiation on intra-canal dentin surface and dentinal tubule openings after biomechanical preparation: scanning electron microscopic study. Indian J Dent. 2015; https://doi.org/10.4103/0975-962x.155889.

  67. Janani M, Jafari F, Samiei M, Lotfipour F, Nakhlband A, Ghasemi N, Salari T. Evaluation of antibacterial efficacy of photodynamic therapy vs. 2.5% NaOCl against E. faecalis-infected root canals using real-time PCR technique. J Clin Exp Dent. 2017; https://doi.org/10.4317/jced.53526.

  68. Asnaashari M, Ghorbanzadeh S, Azari-Marhabi S, Mojahedi SM. Laser assisted treatment of extra oral cutaneous sinus tract of endodontic origin: a case report. J Lasers Med Sci. 2017; https://doi.org/10.15171/jlms.2017.s13.

  69. Wang HM, Zhou MQ, Hong J. Histological evaluations on periapical tissues after irradiation by erbium-doped yttrium aluminum garnet laser in Labradors dogs. Shanghai Kou Qiang Yi Xue. 2016;25:657.

    PubMed  Google Scholar 

  70. Marzadori M, Stefanini M, Sangiorgi M, Mounssif I, Monaco C, Zucchelli G. Crown lengthening and restorative procedures in the esthetic zone. Periodontol 2000. 2018; https://doi.org/10.1111/prd.12208.

  71. Chen C-K, Wu Y-T, Chang N-J, Lan W-H, Ke J-H, Fu E, Yuh D-Y. Er:YAG Laser for surgical crown lengthening: a 6-month clinical study. Int J Periodontics Restorative Dent. 2017; https://doi.org/10.11607/prd.2551.

  72. Kang Y, Rabie AB, Wong RW. A review of laser applications in orthodontics. International journal of orthodontics (Milwaukee, Wis.). 2014;25(1): 47–56.

    Google Scholar 

  73. Fornaini C, Merigo E, Vescovi P, Lagori G, Rocca JP. Use of laser in orthodontics: applications and perspectives. Laser Ther. 2013; https://doi.org/10.5978/islsm.13-OR-10.

  74. Üşümez S, Orhan M, Üşümez A. Laser etching of enamel for direct bonding with an Er, Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofac Orthop. 2002; https://doi.org/10.1067/mod.2002.127294.

  75. Giannelli M, Formigli L, Bani D. Comparative evaluation of Photoablative efficacy of erbium: yttrium-aluminium-garnet and diode laser for the treatment of gingival hyperpigmentation. A Randomized Split-Mouth Clinical Trial. J Periodontol. 2014; https://doi.org/10.1902/jop.2013.130219.

  76. Kafas P, Stavrianos C, Jerjes W, Upile T, Vourvachis M, Theodoridis M, Stavrianou I. Upper-lip laser frenectomy without infiltrated anaesthesia in a paediatric patient: a case report. Cases J. 2009; https://doi.org/10.1186/1757-1626-2-7138.

  77. Pié-Sánchez J, España-Tost AJ, Arnabat-Domínguez J, Gay-Escoda C. Comparative study of upper lip frenectomy with the CO 2 laser versus the Er, Cr: YSGG laser. Med Oral Patol Oral Cir Bucal. 2012; https://doi.org/10.4317/medoral.17373.

  78. Gontijo I, Navarro RS, Haypek P, Ciamponi AL, Haddad AE. The applications of diode and Er:YAG lasers in labial frenectomy in infant patients. J Dent Child. 2005;72:10.

    Google Scholar 

  79. Azma E, Safavi N. Diode laser application in soft tissue oral surgery. J Lasers Med Sci. 2013;4:206–11.

    PubMed  PubMed Central  Google Scholar 

  80. Fiorotti RC, Bertolini MM, Nicola JH, Nicola EMD. Early lingual frenectomy assisted by CO2 laser helps prevention and treatment of functional alterations caused by ankyloglossia. Int J Orofacial Myology. 2004;30:64.

    PubMed  Google Scholar 

  81. Koh RU, Oh T-J, Rudek I, Neiva GF, Misch CE, Rothman ED, Wang H-L. Hard and soft tissue changes after Crestal and Subcrestal immediate implant placement. J Periodontol. 2011; https://doi.org/10.1902/jop.2011.100541.

  82. Ivanenko M, Werner M, Afilal S, Klasing M, Hering P. Ablation of hard bone tissue with pulsed CO2 lasers. Med Laser Appl. 2005; https://doi.org/10.1016/j.mla.2005.02.007.

  83. Buchalla W, Attin T. External bleaching therapy with activation by heat, light or laser—a systematic review. Dent Mater. 2007; https://doi.org/10.1016/j.dental.2006.03.018.

  84. Dostalova T, Jelinkova H, Housova D, Sulc J, Nemec M, Miyagi M, Brugnera Junior A, Zanin F. Diode laser-activated bleaching. Braz. Dent. J. 2004;15:SI3.

    Article  PubMed  Google Scholar 

  85. Fekrazad R, Alimazandarani S, Kalhori KAM, Assadian H, Mirmohammadi SM. Comparison of laser and power bleaching techniques in tooth color change. J Clin Exp Dent. 2017; https://doi.org/10.4317/jced.53435.

  86. De Moor RJG, Verheyen J, Diachuk A, Verheyen P, Meire MA, De Coster PJ, Keulemans F, De Bruyne M, Walsh LJ. Insight in the chemistry of laser-activated dental bleaching. Sci World J. 2015; https://doi.org/10.1155/2015/650492.

  87. Kalies S, Kuetemeyer K, Heisterkamp A. Mechanisms of high-order photobleaching and its relationship to intracellular ablation. Biomed Opt Express. 2011; https://doi.org/10.1364/boe.2.000805.

  88. Yang J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. Dent Clin N Am. 2005; https://doi.org/10.1016/j.cden.2005.05.010.

  89. Thareja RK, Sharma AK, Shukla S. Spectroscopic investigations of carious tooth decay. Med Eng Phys. 2008; https://doi.org/10.1016/j.medengphy.2008.02.005.

  90. Al-Batayneh OB, Seow WK, Walsh LJ (2014) Assessment of Er:YAG laser for cavity preparation in primary and permanent teeth: a scanning electron microscopy and thermographic study. Pediatr Dent 36 90.

    Google Scholar 

  91. Ciaramicoli MT, Carvalho RCR, Eduardo CP. Treatment of cervical dentin hypersensitivity using neodymium: Yttrium-Aluminum-Garnet laser. Clin Eval Lasers Surg Med. 2003; https://doi.org/10.1002/lsm.10232.

  92. Eguro T, Maeda T, Tanabe M, Otsuki M, Tanaka H. Adhesion of composite resins to enamel irradiated by the Er:YAG laser: application of the ultrasonic scaler on irradiated surface. Lasers Surg Med. 2001; https://doi.org/10.1002/lsm.1063.

  93. Strobl K, Bahns TL, Wiliham L, Bishara SE, Stwalley WC. Laser-aided debonding of orthodontic ceramic brackets. Am J Orthod Dentofac Orthop. 1992; https://doi.org/10.1016/0889-5406(92)70007-W.

  94. Tocchio RM, Williams PT, Mayer FJ, Standing KG. Laser debonding of ceramic orthodontic brackets. Am J Orthod Dentofac Orthop. 1993; https://doi.org/10.1016/S0889-5406(05)81765-2.

  95. Sgolastra F, Petrucci A, Gatto R, Monaco A. Effectiveness of laser in dentinal hypersensitivity treatment: a systematic review. J Endod. 2011; https://doi.org/10.1016/j.joen.2010.11.034.

  96. Kara C, Orbak R. Comparative evaluation of Nd:YAG laser and fluoride varnish for the treatment of dentinal hypersensitivity. J Endod. 2009; https://doi.org/10.1016/j.joen.2009.04.004.

  97. Persson A, Andersson M, Oden A, Sandborgh-Englund G. A three-dimensional evaluation of a laser scanner and a touch-probe scanner. J Prosthet Dent. 2006; https://doi.org/10.1016/j.prosdent.2006.01.003.

  98. Kovacs L, Zimmermann A, Brockmann G, Baurecht H, Schwenzer-Zimmerer K, Papadopulos NA, Papadopoulos MA, Sader R, Biemer E, Zeilhofer HF. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner. IEEE Trans Med Imaging. 2006; https://doi.org/10.1109/TMI.2006.873624.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coluzzi, D.J., Al Timimi, Z., Saleem, M. (2021). Digitization and Dental Lasers. In: Jain, P., Gupta, M. (eds) Digitization in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-65169-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65169-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65168-8

  • Online ISBN: 978-3-030-65169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics