Skip to main content

Biomedical Application of Fe-Mn Oxide Nanoparticles

  • Conference paper
  • First Online:
8th European Medical and Biological Engineering Conference (EMBEC 2020)

Abstract

The paper presents the thermal characterization of Fe-Mn oxide nanoparticles with high SAR value, when used in magnetic field hyperthermia conditions. The synthesis shows good reproducibility. Finally, the paper presents a possible use of the presented nanoparticles included in PLGA nanocarriers for biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jordan, A., Scholz, R., Wust, P., Fahling, H., Roland felix: magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999). https://doi.org/10.1016/s0304-8853(99)00088-8

  2. Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 (2002)

    Article  Google Scholar 

  3. Baronzio, G.: A brief overview of hyperthermia in cancer treatment. J. Integr. Oncol. 03 (2014). https://doi.org/10.4172/2329-6771.1000115

  4. Goya, G.F., Asín, L., Ibarra, M.R.: Cell death induced by AC magnetic fields and magnetic nanoparticles: current state and perspectives. Int. J. Hyperth. 29, 810–818 (2013)

    Article  Google Scholar 

  5. Fortin, J.P., Gazeau, F., Wilhelm, C.: Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles. Eur. Biophys. J. EBJ 37, 223–228 (2008)

    Article  Google Scholar 

  6. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., Riess, H.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol./Hematol. 43, 33–56 (2002)

    Article  Google Scholar 

  7. Kozissnik, B., Bohorquez, A.C., Dobson, J., Rinaldi, C.: Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int. J. Hyperth. 29, 706–714 (2013). https://doi.org/10.3109/02656736.2013.837200

    Article  Google Scholar 

  8. Krishnan, K.M.: Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 46, 2523–2558 (2010)

    Article  Google Scholar 

  9. Brezovich, I.A., Atkinson, W.J., Lilly, M.B.: Local hyperthermia with interstitial techniques. Can. Res. 44, 4752s–4756s (1984)

    Google Scholar 

  10. Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M.: Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Coll. Interface. Sci. 166, 8–23 (2011). https://doi.org/10.1016/j.cis.2011.04.003

    Article  Google Scholar 

  11. Dutz, S., H.R.: Magnetic nanoparticles for biomedical heating applications. Z. Phys. Chem. 220, 145 (2005)

    Google Scholar 

  12. Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532 (2009). https://doi.org/10.1039/b815548h

    Article  Google Scholar 

  13. Xu, C., Sun, S.: Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans. 5583 (2009). https://doi.org/10.1039/b900272n

  14. Andreu, I., Natividad, E.: Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int. J. Hyperth. 29, 739–751 (2013)

    Article  Google Scholar 

  15. Natividad, E., Castro, M., Mediano, A.: Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids. J. Mag. Magn. Mater. 321, 1497–1500 (2009). https://doi.org/10.1016/j.jmmm.2009.02.072

  16. Pavel, M., Stancu, A.: Ferromagnetic nanoparticles dose based on tumor size in magnetic fluid hyperthermia cancer therapy. IEEE Trans. Magn. 45, 5251–5254 (2009)

    Article  Google Scholar 

  17. Soetaert, F., Kandala, S.K., Bakuzis, A., Ivkov, R.: Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Sci. Rep. 7, 6661 (2017). https://doi.org/10.1038/s41598-017-07088-w

    Article  Google Scholar 

  18. Dennis, C.L., Ivkov, R.: Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 29, 715–729 (2013)

    Article  Google Scholar 

  19. Bordelon, D.E., Cornejo, C., Grüttner, C., Westphal, F., DeWeese, T.L., Ivkov, R.: Magnetic nanoparticle heating efficiency reveals magneto-structural differences when characterized with wide ranging and high amplitude alternating magnetic fields. J. Appl. Phys. 109, 124904 (2011). https://doi.org/10.1063/1.3597820

    Article  Google Scholar 

  20. Urtizberea, A., Natividad, E., Arizaga, A., Castro, M., Mediano, A.: Specific absorption rates and magnetic properties of ferrofluids with interaction effects at low concentrations. J. Phys. Chem. C 114, 4916–4922 (2010). https://doi.org/10.1021/jp912076f

    Article  Google Scholar 

  21. Branquinho, L.C., Carrião, M.S., Costa, A.S., Zufelato, N., Sousa, M.H., Miotto, R., Ivkov, R., Bakuzis, A.F.: Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia. Sci. Rep. 3, 2887 (2013)

    Google Scholar 

  22. Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.: Monodisperse MFe2O4 (M = Fe Co, Mn) Nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2003). https://doi.org/10.1021/ja0380852

    Article  Google Scholar 

  23. Ghasemi, E., Mirhabibi, A., Edrissi, M.: Synthesis and rheological properties of an iron oxide ferrofluid. J. Magn. Magn. Mater. 320, 2635–2639 (2008). https://doi.org/10.1016/j.jmmm.2008.05.036

    Article  Google Scholar 

  24. Mariano, R.N., Alberti, D., Cutrin, J.C., Geninatti Crich, S., Aime, S.: Design of PLGA based nanoparticles for imaging guided applications. Mol. Pharm. 11, 4100–4106 (2014). https://doi.org/10.1021/mp5002747

    Article  Google Scholar 

  25. Ruggiero, M.R., Crich, S.G., Sieni, E., Sgarbossa, P., Forzan, M., Cavallari, E., Stefania, R., Dughiero, F., Aime, S.: Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles. Nanotechnology 27, 285104 (2016). https://doi.org/10.1088/0957-4484/27/28/285104

    Article  Google Scholar 

  26. Bertani, R., Ceretta, F., Barba, P.D., Dughiero, F., Forzan, M., Michelin, R.A., Sgarbossa, P., Sieni, E., Spizzo, F.: Optimal inductor design for nanofluid heating characterisation. Eng. Comput. 32, 1870–1892 (2015). https://doi.org/10.1108/EC-10-2014-0218

    Article  Google Scholar 

  27. Di Barba, P.D., Dughiero, F., Sieni, E.: Magnetic field synthesis in the design of inductors for magnetic fluid hyperthermia. IEEE Trans. Magn. 46, 2931–2934 (2010)

    Article  Google Scholar 

  28. Del Bianco, L., Spizzo, F., Sgarbossa, P., Sieni, E., Barucca, G., Ruggiero, M.R., Geninatti Crich, S.: Dipolar magnetic interactions in mn-doped magnetite nanoparticles loaded into PLGA nanocapsules for nanomedicine applications. J. Phys. Chem. C 123, 30007–30020 (2019). https://doi.org/10.1021/acs.jpcc.9b09146

    Article  Google Scholar 

Download references

Acknowledgements

Roberta Bertani and Mirto Mozzon wish to thank the TWINNING-2017 research project of the Industrial Engineering Department (University of Padova) for the financial support. The research was made possible thanks to the networking of the COST action CA17115 - European network for advancing Electromagnetic hyperthermic medical technologies action (www.um.edu.mt/projects/mywave/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Sieni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sgarbossa, P. et al. (2021). Biomedical Application of Fe-Mn Oxide Nanoparticles. In: Jarm, T., Cvetkoska, A., Mahnič-Kalamiza, S., Miklavcic, D. (eds) 8th European Medical and Biological Engineering Conference. EMBEC 2020. IFMBE Proceedings, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-64610-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64610-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64609-7

  • Online ISBN: 978-3-030-64610-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics