Skip to main content

Copula Function and C-Volume

  • Chapter
  • First Online:
Counting Statistics for Dependent Random Events

Abstract

This chapter is devoted to a short review of the basic concepts of the theory of dependence functions or copula functions, as they are more usually called. In particular our objective is to define the volume of a copula function: this is one of the basic ingredients of the aggregation algorithm that will be discussed in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We define the generalized inverse\(F^{[-1]}:(0,1)\rightarrow \mathbb {R}\) as \( F^{[-1]}(w)=\inf \left \{l\in \mathbb {R} :F(l)\geq w\right \}, \) that coincides with the standard inverse function when this exists.

  2. 2.

    As for example in the Archimedean family, the assumption to work with strict generators is sufficient to assure the existence of the tail dependence coefficients (see Nelsen 25).

  3. 3.

    These features define a famous class of functionals, i.e., the family of Laplace transforms.

  4. 4.

    We talk about copula’s parameter because in this procedure we work with hierarchical copulas and so with Archimedean ones that are characterized by only one parameter.

  5. 5.

    This threshold is fixed coherently with the problem at hand.

  6. 6.

    The coordinates of the box S are computed as \(\mathbf {u}=col(\tilde {\mathbf {u}}'),\mathbf {v}=col(\tilde {\mathbf {v}}')\), where the function \(col:[0,1]^{\max \{m_s, s=1,\ldots ,k\}}\times [0,1]^k\rightarrow [0,1]^n\) sets orderly all the columns of a matrix into the same column.

  7. 7.

    We refer to D(i, k) as the number of the ways in which one can distribute the integer i into k groups taking into account the order into the groups (o.c.ds for short). If we also take into account the cardinalities of the groups, we refer to D c(i, k) as the number of the ordered compatible (for groups’ cardinalities) combinatorial distributions.

  8. 8.

    We assume to know the estimations of the real parameters within and between the groups which may be estimated by an econometric methodology, such as the maximum likelihood method, possibly simplifying the problem by considering the limiting distributions proposed for Archimedean copulas with granularity adjustment, and then compensated to account for the homogeneous approximation as suggested in Definition 2.4.2.

  9. 9.

    We must recall the representation of the survival copula function proposed in Corollary 4.3.2.

References

  1. Barbe, P., Genest, C., Ghoudi, K., & Rémillard, B. (1996). On Kendall’s process. Journal of Multivariate Analysis, 58, 197–229.

    Article  MathSciNet  Google Scholar 

  2. Bedford, T., & Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics, 30(4), 1031–1068.

    Article  MathSciNet  Google Scholar 

  3. Bernardi, E., & Romagnoli, S. (2011). Computing the volume of an high-dimensional semi-unsupervised hierarchical copula. International Journal of Computer Mathematics, 88(12), 2591–2607.

    Article  MathSciNet  Google Scholar 

  4. Bernardi, E., & Romagnoli, S. (2012). Limiting loss distribution on a hierarchical copula-based model. International Review of Applied Financial Issues and Economics, 4(2), 126–145.

    Google Scholar 

  5. Bernardi, E., & Romagnoli, S. (2013). A clusterized copula-based probability distribution of a counting variable for high-dimensional problems. The Journal of Credit Risk, 9(2), 3–26.

    Article  Google Scholar 

  6. Cherubini, U., & Romagnoli, (2009). Computing copula volume in n-dimensions. Applied Mathematical Finance, 16(4), 307–314.

    Article  MathSciNet  Google Scholar 

  7. Choros, B., Härdle, W., & Okhrin, O. (2013). Valuation of collateralized debt obligations with hierarchical Archimedean copulae. Journal of Empirical Finance, 24, 42–62.

    Article  Google Scholar 

  8. Cifuentes, A., & O’Connor, G. (1996). The binomial expansion method applied to CBO/CLO analysis. Moody’s Special Report, December.

    Google Scholar 

  9. Cifuentes, A., Efrat, I., Glouck, J., & Murphy, E. (1999). Buying and selling credit risk: A perspective on credit-linked obligations. In J. Gregory (Ed.), Credit Derivatives (pp. 112–123). London: Risk Book.

    Google Scholar 

  10. Czado, C. (2010). Pair-copula constructions of multivariate copulas. In P. Jaworski, F. Durante, W. Härdle, & T. Rychlik (Eds.), Copula Theory and Its Applications. Berlin: Springer.

    Google Scholar 

  11. dos Anjos, U., & Kolev, N. (2005). An application of Kendall distributions. Review of Business and Economic Research, 1, 95–102.

    Google Scholar 

  12. Duffie, D., & Gârleanu, N. (2001). Risk and valuation of collateralized debt obligations. Financial Analyst’s Journal, 57(1), 41–59.

    Article  Google Scholar 

  13. Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In S. Rachev (Ed.), Handbook of Heavy Tailed Distributions in Finance (pp. 329–384). Amsterdam/Boston: Elsevier

    Chapter  Google Scholar 

  14. Fang, K. T., Kots, S., & Ng, W. (1990). Symmetric Multivariate and Related Distributions. London: Chapman & Hall.

    Book  Google Scholar 

  15. Féron, R. (1956). Sur les tableaux de corrélation dont les marges sont donées, cas de l’espace à trois dimensions. Publ. Inst. Statist. Univ. Paris, 5, 3–12.

    MathSciNet  MATH  Google Scholar 

  16. Francois, D., Wertz, V., & Verleysen, M. (2005). Non-Euclidean metrics for similarity search in noisy data sets. In Proceedings of European Symposium on Artificial Neural Networks, ESANN’2005.

    Google Scholar 

  17. Hering, C., Hofert, M., Mai, J. F., & Scherer, M. (2010). Constructing hierarchical Archimedean copulas with Lèvy subordinators. Journal of Multivariate Analysis, 101, 1428–1433

    Article  MathSciNet  Google Scholar 

  18. Hofert, M. (2008). Sampling Archimedean copulas. Computational Statistics and Data Analysis, 52(12), 5163–5174.

    Article  MathSciNet  Google Scholar 

  19. Imlahi, L., Ezzerg, M., & Chakak, A. (1999). Estimación de la curva mediana de una cópula C(x 1, …, x n). Rev. R. Acad. Cien. Exact. Fis. Nat, 93(2), 241–250.

    MATH  Google Scholar 

  20. Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.

    Book  Google Scholar 

  21. Kohonen, T., & Hondela, T. (2007). Kohonen network. Scholarpedia, 2, 1568.

    Article  Google Scholar 

  22. Kurowicka, D., & Joe, H. (2011). Dependence Modeling. Vine Copulae Handbook. Singapore/Hackensack: World Scientific.

    Google Scholar 

  23. Luo, X., & Shevchenko, P. V. (2010). The t copula with multiple parameters of degrees of freedom: bivariate characteristics and application to risk management. Quantitative Finance, 10(9), 1039–1054.

    Article  MathSciNet  Google Scholar 

  24. McNeil, A. J., & Nes̆lehová, J. (2009). Multivariate Archimedean copulas, d-monotone functions and l 1-norm symmetric distributions. Annals of Statistics, 37(5B), 3059–3097.

    Google Scholar 

  25. Nelsen, R. N. (2006). Introduction to Copulas (2nd ed.). Heidelberg: Springer.

    MATH  Google Scholar 

  26. Okhrin, O., Okhrin, Y., & Schmid, W. (2013a). Determining the structure and estimation of hierarchical Archimedean copulas. Journal of Econometrics, 173(2), 189–204.

    Article  MathSciNet  Google Scholar 

  27. Okhrin, O., Okhrin, Y., & Schmid, W. (2013b). Properties of hierarchical Archimedean copulas. Statistics and Risk Modeling, 30(1), 21–53.

    Article  MathSciNet  Google Scholar 

  28. Pickands, J. (1981). Multivariate extreme value distributions. Bulletin of the International Statistical Institute, 49, 859–878.

    MathSciNet  MATH  Google Scholar 

  29. Savu, C., & Trede, M. (2010). Hierarchical Archimedean Copulas. Quantitative Finance, 10(3), 295–304.

    Article  MathSciNet  Google Scholar 

  30. Schorin, C., & Weinrich, S. (1998). Collateralized debt obligation handbook. Working paper, Morgan Stanley Dean Witter.

    Google Scholar 

  31. Sklar, A. (1959). Fonctions de repartition à n dimensions et leurs marges. Publication Inst. Statist. Univ. Paris, 8, 229–231.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernardi, E., Romagnoli, S. (2021). Copula Function and C-Volume. In: Counting Statistics for Dependent Random Events. Springer, Cham. https://doi.org/10.1007/978-3-030-64250-1_2

Download citation

Publish with us

Policies and ethics