Skip to main content

Topology in Magnetism

  • Chapter
  • First Online:
Chirality, Magnetism and Magnetoelectricity

Part of the book series: Topics in Applied Physics ((TAP,volume 138))

Abstract

In this chapter, we review recent developments of two usages of topology in magnetism. One is to classify spin structures with different topological numbers (topology in real space). The other usage is to distinguish normal magnetic materials from those magnetic materials supporting topologically protected unidirectional surface spin waves inside spin wave band gaps (topology in reciprocal space).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Li, Origine de la boussole II. aimant et boussole. Isis 45(2), 175–196 (1954)

    Google Scholar 

  2. J.D. Jackson, Classical Electrodynamics, 3rd ed. edn. (Wiley, New York, NY, 1999)

    Google Scholar 

  3. J.J. Sakurai, Modern Quantum mechanics, rev edn. (Addison-Wesley, Reading, MA, 1994)

    Google Scholar 

  4. W. Ley, The galactic giants. Galaxy Science Fiction (1965), pp. 130–142

    Google Scholar 

  5. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  6. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989)

    Article  ADS  Google Scholar 

  7. N. Kurtl, Selected Works of Louis Néel, 1st edition (CRC Press, 1988)

    Google Scholar 

  8. E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts, S. Wang, S.A. Wolf, A.W. Ghosh, J.W. Lu, S.J. Poon, M. Stan, W.H. Butler, S. Gupta, C.K.A. Mewes, T. Mewes, P.B. Visscher, Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46(6), 1873–1878 (2010)

    Article  ADS  Google Scholar 

  9. G. Moore, Progress in Digital Integrated Electronics (IEEE, IEDM Tech Digest, 1975), pp. 11–13

    Google Scholar 

  10. Fundamentals and applications, Igor Žutić, Jaroslav Fabian, and S. Das Sarma. Spintronics. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  11. K. Fossheim, A. Sudbø, Superconductivity: Physics and Applications (John Wiley & Sons, Ltd, 2005)

    Google Scholar 

  12. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D Appl. Phys. 43(26), 264001 (2010)

    Article  ADS  Google Scholar 

  13. A.A. Serga, A.V. Chumak, B. Hillebrands, YIG magnonics. J. Phys. D Appl. Phys. 43(26), 264002 (2010)

    Article  ADS  Google Scholar 

  14. D.S. Richeson, Euler’s Gem: The Polyhedron Formula and the Birth of Topology (Princeton University Press, 2008)

    Google Scholar 

  15. C.N. Yang, Mo-Lin Ge, and Yang-Hui He (Topology and Physics, WORLD SCIENTIFIC, 2019)

    Google Scholar 

  16. A. Blanco-Redondo, B. Bell, D. Oren, B.J. Eggleton, M. Segev, Topological protection of biphoton states. Science 362(6414), 568–571 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. H.Y. Yuan, Q. Liu, K. Xia, Z. Yuan, X.R. Wang, Proper dissipative torques in antiferromagnetic dynamics. EPL (Europhysics Letters)126(6), 67006 (2019)

    Google Scholar 

  18. T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40(6), 3443–3449 (2004)

    Article  ADS  Google Scholar 

  19. A. Thiaville, J. Miltat. Topology and Magnetic Domain Walls (Springer International Publishing, Cham, 2018), pp. 41–73

    Google Scholar 

  20. S.P. Stuart, Parkin, Masamitsu Hayashi, and Luc Thomas. Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    Google Scholar 

  21. N.L. Schryer, L.R. Walker, The motion of 180\(^\circ \) domain walls in uniform dc magnetic fields. J. Appl. Phys. 45(12), 5406–5421 (1974)

    Article  ADS  Google Scholar 

  22. A.P. Malozemoff, J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic Press, 1979)

    Google Scholar 

  23. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1), L1–L7 (1996)

    Article  ADS  Google Scholar 

  24. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  Google Scholar 

  25. S. Zhang, Z. Li, Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  26. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  Google Scholar 

  27. M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207 (2006)

    Article  ADS  Google Scholar 

  28. K. Kondou, N. Ohshima, S. Kasai, Y. Nakatani, T. Ono, Single shot detection of the magnetic domain wall motion by using tunnel magnetoresistance effect. Appl. Phys. Expr. 1, 061302 (2008)

    Article  ADS  Google Scholar 

  29. X.R. Wang, P. Yan, J. Lu, High-field domain wall propagation velocity in magnetic nanowires. EPL (Europhysics Letters) 86(6), 67001 (2009)

    Article  ADS  Google Scholar 

  30. X.R. Wang, P. Yan, J. Lu, C. He, Magnetic field driven domain-wall propagation in magnetic nanowires. Ann. Phys. 324(8), 1815–1820 (2009)

    Article  ADS  MATH  Google Scholar 

  31. X.S. Wang, P. Yan, Y.H. Shen, G.E.W. Bauer, X.R. Wang, Domain wall propagation through spin wave emission. Phys. Rev. Lett. 109, 167209 (2012)

    Article  ADS  Google Scholar 

  32. X.S. Wang, X.R. Wang, Spin wave emission in field-driven domain wall motion. Phys. Rev. B 90, 184415 (2014)

    Article  ADS  Google Scholar 

  33. B. Hu, X.R. Wang, Instability of walker propagating domain wall in magnetic nanowires. Phys. Rev. Lett. 111, 027205 (2013)

    Article  ADS  Google Scholar 

  34. G. Tatara, H. Kohno, Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  Google Scholar 

  35. A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake, K. Mibu, T. Shinjo, Effect of joule heating in current-driven domain wall motion. Appl. Phys. Lett. 86(1), 012511 (2005)

    Article  ADS  Google Scholar 

  36. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires. Phys. Rev. Lett. 97, 207205 (2006)

    Google Scholar 

  37. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhysics Letters (EPL) 69(6), 990–996 (2005)

    Article  ADS  Google Scholar 

  38. Ya.B. Bazaliy, B.A. Jones, S-C. Zhang, Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Phys. Rev. B 57, R3213–R3216 (1998)

    Google Scholar 

  39. P. Yan, X.S. Wang, X.R. Wang, All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011)

    Article  ADS  Google Scholar 

  40. J. Han, P. Zhang, J.T. Hou, S.A. Siddiqui, L. Liu, Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366(6469), 1121–1125 (2019)

    Article  ADS  Google Scholar 

  41. Y. Wang, D. Zhu, Y. Yang, K. Lee, R. Mishra, G. Go, S.-H. Oh, D.-H. Kim, K. Cai, E. Liu, S.D. Pollard, S. Shi, J. Lee, K. Leong Teo, Y. Wu, K.-J. Lee, H. Yang, Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator Science 366(6469),1125–1128 (2019)

    Google Scholar 

  42. D. Hinzke, U. Nowak, Domain wall motion by the magnonic spin seebeck effect. Phys. Rev. Lett. 107, 027205 (2011)

    Article  ADS  Google Scholar 

  43. A.A. Kovalev, Y. Tserkovnyak, Thermomagnonic spin transfer and Peltier effects in insulating magnets. EPL (Europhysics Letters) 97(6), 67002 (2012)

    Article  ADS  Google Scholar 

  44. W. Jiang, P. Upadhyaya, Y. Fan, J. Zhao, M. Wang, L.-T. Chang, M. Lang, K.L. Wong, M. Lewis, Y.-T. Lin, J. Tang, S. Cherepov, X. Zhou, Y. Tserkovnyak, R.N. Schwartz, K.L. Wang, Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013)

    Article  ADS  Google Scholar 

  45. O. Tchernyshyov, G.-W. Chern, Fractional vortices and composite domain walls in flat nanomagnets. Phys. Rev. Lett. 95, 197204 (2005)

    Article  ADS  Google Scholar 

  46. R.D. McMichael, M.J. Donahue, Head to head domain wall structures in thin magnetic strips. IEEE Trans. Magn. 33(5), 4167–4169 (1997)

    Article  ADS  Google Scholar 

  47. H.Y. Yuan, X.R. Wang, Birth, growth and death of an antivortex during the propagation of a transverse domain wall in magnetic nanostrips. J. Magn. Magn. Mater. 368, 70–74 (2014)

    Article  ADS  Google Scholar 

  48. H. Yuan, X. Wang, Vortex-assisted domain wall depinning and propagation in notched nanowires. Eur. Phys. J. B 88(9), 214 (2015)

    Article  ADS  Google Scholar 

  49. H.Y. Yuan, X.R. Wang, Boosting domain wall propagation by notches. Phys. Rev. B 92, 054419 (2015)

    Article  ADS  Google Scholar 

  50. R. Hertel, W. Wulfhekel, J. Kirschner, Domain-wall induced phase shifts in spin waves. Phys. Rev. Lett. 93, 257202 (2004)

    Article  ADS  Google Scholar 

  51. X.S. Wang, X.R. Wang, Thermodynamic theory for thermal-gradient-driven domain-wall motion. Phys. Rev. B 90, 014414 (2014)

    Article  ADS  Google Scholar 

  52. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8(12), 899–911 (2013)

    Article  ADS  Google Scholar 

  53. H.Y. Yuan, X.R. Wang, Nano magnetic vortex wall guide. AIP Adv. 5(11), 117104 (2015)

    Article  ADS  Google Scholar 

  54. A.A. Thiele, Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230–233 (1973)

    Article  ADS  Google Scholar 

  55. S. Agramunt-Puig, N. Del-Valle, C. Navau, A. Sanchez, Controlling vortex chirality and polarity by geometry in magnetic nanodots. Appl. Phys. Lett. 104(1), 012407 (2014)

    Article  ADS  Google Scholar 

  56. X.S. Wang, A. Qaiumzadeh, A. Brataas, Current-driven dynamics of magnetic hopfions. Phys. Rev. Lett. 123, 147203 (2019)

    Article  ADS  Google Scholar 

  57. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono, Magnetic vortex core observation in circular dots of permalloy. Science 289(5481), 930–932 (2000)

    Google Scholar 

  58. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, R. Wiesendanger, Direct observation of internal spin structure of magnetic vortex cores. Science 298(5593), 577–580 (2002)

    Article  ADS  Google Scholar 

  59. S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, H.A. Padmore, Vortex core-driven magnetization dynamics. Science 304(5669), 420–422 (2004)

    Article  ADS  Google Scholar 

  60. B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schütz, Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444(7118), 461–464 (2006)

    Article  ADS  Google Scholar 

  61. K.Yu. Guslienko, K-S. Lee, S-K. Kim, Dynamic origin of vortex core switching in soft magnetic nanodots. Phys. Rev. Lett. 100, 027203 (2008)

    Google Scholar 

  62. D.-H. Kim, E.A. Rozhkova, I.V. Ulasov, S.D. Bader, T. Rajh, M.S. Lesniak, V. Novosad, Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9(2), 165–171 (2010)

    Article  ADS  Google Scholar 

  63. R. Streubel, D. Makarov, F. Kronast, V. Kravchuk, M. Albrecht, O.G. Schmidt, Magnetic vortices on closely packed spherically curved surfaces. Phys. Rev. B 85, 174429 (2012)

    Article  ADS  Google Scholar 

  64. T.H.R. Skyrme, B.F.J. Schonland, A non-linear field theory. Proc. Roy. Soc. Lond. Ser A. Math. Phys. Sci. 260(1300), 127–138 (1961)

    Google Scholar 

  65. T.H.R. Skyrme, A unified field theory of mesons and baryons. Nuc. Phys. 31, 556–569 (1962)

    Article  MathSciNet  Google Scholar 

  66. A. Bogdanov, New localized solutions of the nonlinear field equations. JETP Lett. 62, 247 (1995)

    ADS  MathSciNet  Google Scholar 

  67. B.M.A.G. Piette, B.J. Schroers, W.J. Zakrzewski, Dynamics of baby skyrmions. Nucl. Phys. B 439(1), 205–235 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8(11), 839–844 (2013)

    Article  ADS  Google Scholar 

  69. A. Qaiumzadeh, I.A. Ado, R.A. Duine, M. Titov, A. Brataas, Theory of the interfacial Dzyaloshinskii-Moriya interaction in Rashba antiferromagnets. Phys. Rev. Lett. 120, 197202 (2018)

    Article  ADS  Google Scholar 

  70. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Writing and deleting single magnetic skyrmions. Science 341(6146), 636–639 (2013)

    Article  ADS  Google Scholar 

  71. W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. Benjamin Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, A. Hoffmann, Blowing magnetic skyrmion bubbles. Science. 349(6245), 283–286 (2015)

    Google Scholar 

  72. J. Zang, M. Mostovoy, J.H. Han, N. Nagaosa, Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011)

    Google Scholar 

  73. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet. Science 323(5916), 915–919 (2009)

    Article  ADS  Google Scholar 

  74. X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, Y. Tokura, Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3(1), 988 (2012)

    Article  ADS  Google Scholar 

  75. N. Romming, A. Kubetzka, C. Hanneken, K. von Bergmann, R. Wiesendanger, Field-dependent size and shape of single magnetic skyrmions. Phys. Rev. Lett. 114, 177203 (2015)

    Article  ADS  Google Scholar 

  76. R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, G. Finocchio, A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4(1), 6784 (2014)

    Article  ADS  Google Scholar 

  77. S. Krause, R. Wiesendanger, Skyrmionics gets hot. Nat. Mater. 15(5), 493–494 (2016)

    Article  ADS  Google Scholar 

  78. S. Rohart, A. Thiaville, Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 88, 184422 (2013)

    Article  ADS  Google Scholar 

  79. J. Iwasaki, M. Mochizuki, N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4(1), 1463 (2013)

    Article  ADS  Google Scholar 

  80. X. Zhang, Y. Zhou, M. Ezawa, G.P. Zhao, W. Zhao, Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack. Sci. Rep. 5(1), 11369 (2015)

    Google Scholar 

  81. M.A. Castro, S. Allende, Skyrmion core size dependence as a function of the perpendicular anisotropy and radius in magnetic nanodots. J. Magn. Magn. Mater. 417, 344–348 (2016)

    Article  ADS  Google Scholar 

  82. N. Vidal-Silva, A. Riveros, J. Escrig, Stability of Néel skyrmions in ultra-thin nanodots considering Dzyaloshinskii-Moriya and dipolar interactions. J. Magn. Magn. Mater. 443, 116–123 (2017)

    Article  ADS  Google Scholar 

  83. A.O. Leonov, T.L. Monchesky, N. Romming, A. Kubetzka, A.N. Bogdanov, R. Wiesendanger, The properties of isolated chiral skyrmions in thin magnetic films. New J. Phys. 18(6), 065003 (2016)

    Article  ADS  Google Scholar 

  84. X.S. Wang, H.Y. Yuan, X.R. Wang, A theory on skyrmion size. Commun. Phys. 1(1), 31 (2018)

    Article  Google Scholar 

  85. H.-B. Braun, Fluctuations and instabilities of ferromagnetic domain-wall pairs in an external magnetic field. Phys. Rev. B 50, 16485–16500 (1994)

    Article  ADS  Google Scholar 

  86. A. Siemens, Y. Zhang, J. Hagemeister, E.Y. Vedmedenko, R. Wiesendanger, Minimal radius of magnetic skyrmions: statics and dynamics. New J. Phys. 18(4), 045021 (2016)

    Article  ADS  Google Scholar 

  87. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, The design and verification of MuMax3. AIP Adv. 4(10), 107133 (2014)

    Article  ADS  Google Scholar 

  88. D. Haifeng, R. Che, L. Kong, X. Zhao, C. Jin, C. Wang, J. Yang, W. Ning, R. Li, C. Jin, X. Chen, J. Zang, Y. Zhang, M. Tian, Edge-mediated skyrmion chain and its collective dynamics in a confined geometry. Nat. Communications. 6(1), 8504 (2015)

    Article  ADS  Google Scholar 

  89. I.E. Dzyaloshinskii, The theory of helicoidal structures in antiferromagnets. II. metals. J. Exp. Heoretic. Phys. 20(1), 223 (1965)

    Google Scholar 

  90. H.Y. Yuan, X.R. Wang, Skyrmion creation and manipulation by nano-second current pulses. Sci. Rep. 6(1), 22638 (2016)

    Article  ADS  Google Scholar 

  91. M. Stone, Magnus force on skyrmions in ferromagnets and quantum hall systems. Phys. Rev. B 53, 16573–16578 (1996)

    Article  ADS  Google Scholar 

  92. J. Iwasaki, M. Mochizuki, N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8(10), 742–747 (2013)

    Article  ADS  Google Scholar 

  93. W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. Benjamin Jungfleisch, J.E. Pearson, X. Cheng, O. Heinonen, K.L. Wang, Y. Zhou, A. Hoffmann, S.G.E. te Velthuis, Direct observation of the skyrmion Hall effect. Nat. Phys. 13(2), 162–169 (2017)

    Google Scholar 

  94. M.-W. Yoo, V. Cros, J.-V. Kim, Current-driven skyrmion expulsion from magnetic nanostrips. Phys. Rev. B 95, 184423 (2017)

    Article  ADS  Google Scholar 

  95. N.R. Cooper, Propagating magnetic vortex rings in ferromagnets. Phys. Rev. Lett. 82, 1554–1557 (1999)

    Article  ADS  Google Scholar 

  96. G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5(9), 1252–1254 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  97. L.D. Faddeev, Some comments on the many-dimensional solitons. Lett. Math. Phys. 1(4), 289–293 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  98. J. Hietarinta, P. Salo, Faddeev-Hopf knots: dynamics of linked un-knots. Phys. Lett. B 451(1), 60–67 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. H. Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104(1), 637–665 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  100. L. Faddeev, A.J. Niemi, Partially dual variables in SU(2) Yang-Mills theory. Phys. Rev. Lett. 82, 1624–1627 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. L. Faddeev, A.J. Niemi, Stable knot-like structures in classical field theory. Nature. 387(6628), 58–61 (1997)

    Google Scholar 

  102. E. Babaev, Dual neutral variables and knot solitons in triplet superconductors. Phys. Rev. Lett. 88, 177002 (2002)

    Article  ADS  Google Scholar 

  103. E. Babaev, L.D. Faddeev, A.J. Niemi, Hidden symmetry and knot solitons in a charged two-condensate bose system. Phys. Rev. B 65, 100512 (2002)

    Article  ADS  Google Scholar 

  104. Y. Kawaguchi, M. Nitta, M. Ueda, Knots in a spinor Bose-Einstein condensate. Phys. Rev. Lett. 100, 180403 (2008)

    Article  ADS  Google Scholar 

  105. D. Kleckner, W.T.M. Irvine, Creation and dynamics of knotted vortices. Nat. Phys. 9(4), 253–258

    Google Scholar 

  106. P.J. Ackerman, I.I. Smalyukh, Diversity of knot solitons in liquid crystals manifested by linking of preimages in torons and hopfions. Phys. Rev. X 7, 011006 (2017)

    Google Scholar 

  107. P.J. Ackerman, I.I. Smalyukh, Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat. Mater. 16(4), 426–432 (2017)

    Article  ADS  Google Scholar 

  108. I. Georgescu, Out of the shadows. Nat. Phys. 13(3), 208 (2017)

    Article  Google Scholar 

  109. I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  ADS  Google Scholar 

  110. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    Article  ADS  Google Scholar 

  111. J.-S.B. Tai, I.I. Smalyukh, Static Hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures. Phys. Rev. Lett. 121, 187201 (2018)

    Article  ADS  Google Scholar 

  112. Y. Liu, R.K. Lake, J. Zang, Binding a hopfion in a chiral magnet nanodisk. Phys. Rev. B 98, 174437 (2018)

    Article  ADS  Google Scholar 

  113. P. Sutcliffe, Hopfions in chiral magnets. J. Phys. A: Math. Theor. 51(37), 375401 (2018)

    Article  MATH  Google Scholar 

  114. F.N. Rybakov, N.S. Kiselev, A.B. Borisov, L. Döring, C. Melcher, S. Blügel, Magnetic hopfions in solids. Preprint, page arxiv:1904.00250 (2019)

  115. M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bureau Stand. 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  116. J.H.C. Whitehead, An expression of Hopf’s invariant as an integral. Proc. Natl. Acad. Sci. 33(5), 117–123 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. S. Zhang, S.S.-L. Zhang, Generalization of the Landau-Lifshitz-Gilbert equation for conducting ferromagnets. Phys. Rev. Lett. 102, 086601 (2009)

    Google Scholar 

  118. J. Gladikowski, M. Hellmund, Static solitons with nonzero Hopf number. Phys. Rev. D 56, 5194–5199 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  119. R. Bott, L.W. Tu, Differential Forms in Algebraic Topology (Graduate Texts in Mathematics. Springer, New York, 1995)

    Google Scholar 

  120. C.P. McNally, Divergence-free interpolation of vector fields from point values – exact \(\nabla \cdot \mathbf{B}=0\) in numerical simulations. Month. Not. Roy. Astronomic. Soc.: Lett. 413(1), L76–L80 (2011)

    Google Scholar 

  121. X. Zhang, J. Xia, Y. Zhou, D. Wang, X. Liu, W. Zhao, M. Ezawa, Control and manipulation of a magnetic skyrmionium in nanostructures. Phys. Rev. B 94, 094420 (2016)

    Article  ADS  Google Scholar 

  122. F. Zheng, H. Li, S. Wang, D. Song, C. Jin, W. Wei, A. Kovács, J. Zang, M. Tian, Y. Zhang, D. Haifeng, R.E. Dunin-Borkowski, Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys. Rev. Lett. 119, 197205 (2017)

    Article  ADS  Google Scholar 

  123. C.L. Kane, E.J. Mele, \({Z}_{2}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  124. B. Andrei Bernevig, T.L. Hughes, S-C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006)

    Google Scholar 

  125. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007)

    Article  ADS  Google Scholar 

  126. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  127. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  ADS  Google Scholar 

  128. C.L. Kane, T.C. Lubensky, Topological boundary modes in isostatic lattices. Nat. Phys. 10(1), 39–45 (2014)

    Article  Google Scholar 

  129. F.D.M. Haldane, S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008)

    Article  ADS  Google Scholar 

  130. S. Fujimoto, Hall effect of spin waves in frustrated magnets. Phys. Rev. Lett. 103, 047203 (2009)

    Article  ADS  Google Scholar 

  131. H. Katsura, N. Nagaosa, P.A. Lee, Theory of the thermal Hall effect in quantum magnets. Phys. Rev. Lett. 104, 066403 (2010)

    Article  ADS  Google Scholar 

  132. Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, Y. Tokura, Observation of the magnon Hall effect. Science 329(5989), 297–299 (2010)

    Article  ADS  Google Scholar 

  133. R. Matsumoto, S. Murakami, Theoretical prediction of a rotating magnon wave packet in ferromagnets. Phys. Rev. Lett. 106, 197202 (2011)

    Article  ADS  Google Scholar 

  134. R. Matsumoto, R. Shindou, S. Murakami, Thermal Hall effect of magnons in magnets with dipolar interaction. Phys. Rev. B 89, 054420 (2014)

    Article  ADS  Google Scholar 

  135. L. Zhang, J. Ren, J.-S. Wang, B. Li, Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013)

    Article  ADS  Google Scholar 

  136. M. Mochizuki, X.Z. Yu, S. Seki, N. Kanazawa, W. Koshibae, J. Zang, M. Mostovoy, Y. Tokura, N. Nagaosa, Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect. Nat. Mater. 13(3), 241–246 (2014)

    Article  ADS  Google Scholar 

  137. A. Mook, J. Henk, I. Mertig, Edge states in topological magnon insulators. Phys. Rev. B 90, 024412 (2014)

    Article  ADS  Google Scholar 

  138. M. Mena, R.S. Perry, T.G. Perring, M.D. Le, S. Guerrero, M. Storni, D.T. Adroja, Ch. Rüegg, D.F. McMorrow, Spin-wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu\(_{2}\)V\(_{2}\)O\(_{7}\). Phys. Rev. Lett. 113, 047202 (2014)

    Article  ADS  Google Scholar 

  139. H. Lee, g H. Han, P.A. Lee, Thermal Hall effect of spins in a paramagnet. Phys. Rev. B 91, 125413 (2015)

    Google Scholar 

  140. R. Chisnell, J.S. Helton, D.E. Freedman, D.K. Singh, R.I. Bewley, D.G. Nocera, Y.S. Lee, Topological magnon bands in a kagome lattice ferromagnet. Phys. Rev. Lett. 115, 147201 (2015)

    Article  ADS  Google Scholar 

  141. C-E. Bardyn, T. Karzig, G. Refael, T.C. H. Liew. Chiral Bogoliubov excitations in nonlinear bosonic systems. Phys. Rev. B 93, 020502 (2016)

    Google Scholar 

  142. S.A. Owerre, A first theoretical realization of honeycomb topological magnon insulator. J. Phys.: Condens. Matter 28(38), 386001 (2016)

    ADS  Google Scholar 

  143. Se K. Kim, H. Ochoa, R. Zarzuela, Y. Tserkovnyak. Realization of the Haldane-Kane-Mele model in a system of localized spins. Phys. Rev. Lett. 117, 227201 (2016)

    Google Scholar 

  144. R. Shindou, -ichiro Ohe, R. Matsumoto, S. Murakami, E. Saitoh, Chiral spin-wave edge modes in dipolar magnetic thin films. Phys. Rev. B 87, 174402 (2013)

    Google Scholar 

  145. R. Shindou, R. Matsumoto, S. Murakami, J. Ohe, Topological chiral magnonic edge mode in a magnonic crystal. Phys. Rev. B 87, 174427 (2013)

    Article  ADS  Google Scholar 

  146. I. Lisenkov, V. Tyberkevych, A. Slavin, P. Bondarenko, B.A. Ivanov, E. Bankowski, T. Meitzler, S. Nikitov, Spin-wave edge modes in finite arrays of dipolarly coupled magnetic nanopillars. Phys. Rev. B 90, 104417 (2014)

    Article  ADS  Google Scholar 

  147. S.O. Demokritov, A.N. Slavin, Magnonics: From Fundamentals to Applications (Topics in Applied Physics. Springer, Berlin Heidelberg, 2012)

    Google Scholar 

  148. D. Grundler, Reconfigurable magnonics heats up. Nat. Phys. 11(6), 438–441 (2015)

    Article  Google Scholar 

  149. B. Lenk, H. Ulrichs, F. Garbs, M. Münzenberg, The building blocks of magnonics. Phys. Rep. 507(4), 107–136 (2011)

    Article  ADS  Google Scholar 

  150. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Magnon spintronics. Nat. Phys. 11(6), 453–461 (2015)

    Article  Google Scholar 

  151. B.I. Halperin, Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982)

    Article  ADS  Google Scholar 

  152. X. Chen, A. Tiwari, S. Ryu, Bulk-boundary correspondence in (3+1)-dimensional topological phases. Phys. Rev. B 94, 045113 (2016)

    Article  ADS  Google Scholar 

  153. X.S. Wang, Y. Su, and X.R. Wang, Topologically protected unidirectional edge spin waves and beam splitter. Phys. Rev. B 95, 014435 (2017)

    Google Scholar 

  154. X.S. Wang, H.W. Zhang, X.R. Wang, Topological magnonics: A paradigm for spin-wave manipulation and device design. Phys. Rev. Applied 9, 024029 (2018)

    Article  ADS  Google Scholar 

  155. X.S. Wang, X.R. Wang, Anomalous magnon Nernst effect of topological magnonic materials. J. Phys. D Appl. Phys. 51(19), 194001 (2018)

    Article  ADS  Google Scholar 

  156. Y. Su, X.S. Wang, X.R. Wang, Magnonic Weyl semimetal and chiral anomaly in pyrochlore ferromagnets. Phys. Rev. B 95, 224403 (2017)

    Google Scholar 

  157. Y. Su, X.R. Wang, Chiral anomaly of Weyl magnons in stacked honeycomb ferromagnets. Phys Rev B 96, 104437 (2017)

    Google Scholar 

  158. G. Jackeli, G. Khaliullin, Mott insulators in the strong spin-orbit coupling limit: From Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009)

    Article  ADS  Google Scholar 

  159. M. Sato, K. Hasebe, K. Esaki, M. Kohmoto, Time-reversal symmetry in non-hermitian systems. Progress Theor. Phys. 127(6), 937–974 (2012)

    Google Scholar 

  160. R.M. White, M. Sparks, I. Ortenburger, Diagonalization of the antiferromagnetic magnon-phonon interaction. Phys. Rev. 139, A450–A454 (1965)

    Article  ADS  Google Scholar 

  161. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Google Scholar 

  162. J.E. Avron, R. Seiler, B. Simon, Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 51, 51–53 (1983)

    Article  ADS  Google Scholar 

  163. A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, J. Zwanziger, The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Theoretical and Mathematical Physics. Springer, Berlin Heidelberg, 2013)

    Google Scholar 

  164. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  165. A.A. Burkov, L. Balents, Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011)

    Google Scholar 

  166. S-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C-C. Lee, S-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M. Zahid Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349(6248), 613–617 (2015)

    Google Scholar 

  167. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Experimental discovery of Weyl Semimetal TaAs. Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  168. L. Ling, Z. Wang, D. Ye, L. Ran, F. Liang, J.D. Joannopoulos, M. Soljačić, Experimental observation of Weyl points. Science 349(6248), 622–624 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  169. F-Y. Li, Y-D. Li, Y. Baek Kim, L. Balents, Y. Yu, G. Chen, Weyl magnons in breathing pyrochlore antiferromagnets. Nat. Commun. 7(1), 12691 (2016)

    Google Scholar 

  170. A. Mook, J. Henk, I. Mertig, Tunable magnon Weyl points in ferromagnetic pyrochlores. Phys. Rev. Lett. 117, 157204 (2016)

    Article  ADS  Google Scholar 

  171. A. Alexey, Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng Wu, Matthias Troyer, Xi Dai, and B. Andrei Bernevig. Type-II Weyl semimetals. Nature 527(7579), 495–498 (2015)

    Google Scholar 

  172. F. Meier, D. Loss, Magnetization transport and quantized spin conductance. Phys. Rev. Lett. 90, 167204 (2003)

    Article  ADS  Google Scholar 

  173. J. Sugiyama, K. Mukai, H. Nozaki, M. Harada, M. Månsson, K. Kamazawa, D. Andreica, A. Amato, A.D. Hillier, Antiferromagnetic spin structure and lithium ion diffusion in Li\({}_{2}\)MnO\({}_{3}\) probed by \({\mu }^{+}\)SR. Phys. Rev. B 87, 024409 (2013)

    Article  ADS  Google Scholar 

  174. T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L.S.I. Veiga, G. Fabbris, D. Haskel, H. Takagi, Hyperhoneycomb iridate \(\beta \text{- }{\text{ Li }}_{2}{\text{ IrO }}_{3}\) as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015)

    Article  ADS  Google Scholar 

  175. X.-L. Sheng, B.K. Nikolić, Monolayer of the \(5d\) transition metal trichloride OsCl\(_{3}\): A playground for two-dimensional magnetism, room-temperature quantum anomalous hall effect, and topological phase transitions. Phys. Rev. B 95, 201402 (2017)

    Article  ADS  Google Scholar 

  176. J. He, X. Li, P. Lyu, P. Nachtigall, Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: nickel chloride monolayer. Nanoscale 9, 2246–2252 (2017)

    Article  Google Scholar 

  177. M-H. Pan, H. Liu, Z. Wang, J-F. Jia, Q-K. Xue, J-L. Li, S. Qin, U.M. Mirsaidov, X.-R. Wang, J.T. Markert, Z. Zhang, C.-K. Shih, Quantum growth of magnetic nanoplatelets of Co on Si with high blocking temperature. Nano Lett. 5(1), 87–90 (2005) PMID: 15792418

    Google Scholar 

  178. This work is supported by the NSFC Grants (No. 11974296, 11774296 and 11804045) and Hong Kong RGC Grants (No. 16301518 and 16301619)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. R. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X.S., Wang, X.R. (2021). Topology in Magnetism. In: Kamenetskii, E. (eds) Chirality, Magnetism and Magnetoelectricity. Topics in Applied Physics, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-030-62844-4_14

Download citation

Publish with us

Policies and ethics