Skip to main content

Radiation Detector Physics

  • Chapter
  • First Online:
Photon Counting Detectors for X-ray Imaging

Abstract

The key point of this chapter is to understand that the detector’s responses are based on physics. The basic concept of a photon counting detector is usually explained using figures like those seen in the previous sections (see Fig. 2.5), but this information is not adequate because the description in the figures does not consider the effect of physics found within a detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Willemink, M. Persson, A. Pourmorteza, N.J. Pelc, D. Fleischmann, Photon-counting CT: technical principles and clinical prospects. Radiology 289, 293–312 (2018). https://doi.org/10.1148/radiol.2018172656

    Article  Google Scholar 

  2. X. Wang, D. Meier, K. Taguchi, D.J. Wagenaar, B.E. Patt, E.C. Frey, Material separation in X-ray CT with energy resolved photon-counting detectors. Med. Phys. 38, 1534–1546 (2011). https://doi.org/10.1118/1.3553401

    Article  Google Scholar 

  3. J. Rinkel, G. Beldjoudi, V. Rebuffel, C. Boudou, P. Ouvrier-Buffet, G. Gonon, L. Verger, A. Brambilla, Experimental evaluation of material identification methods with CdTe X-ray spectrometric detector. IEEE Trans. Nucl. Sci. 58(5), 2371–2377 (2011). https://doi.org/10.1109/TNS.2011.2164266

    Article  Google Scholar 

  4. N. Kimoto, H. Hayashi, T. Asahara, E. Tomita, S. Goto, Y. Mihara, Y. Kanazawa, Y. Tamakawa, S. Yamamoto, M. Yamasaki, M. Okada, D. Hashimoto, Novel material identification method using three energy bins of a photon counting detector taking into consideration Z-dependent beam hardening effect correction with the aim of producing an X-ray image with information of effective atomic number, in Proceedings of 2017 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (2017), p. 18235691. https://doi.org/10.1109/NSSMIC.2017.8533059

    Chapter  Google Scholar 

  5. N. Kimoto, H. Hayashi, T. Asahara, E. Tomita, S. Goto, Y. Kanazawa, S. Yamamoto, M. Okada, M. Yamasaki, Reproduction of response functions of a multi-pixel-type energy-resolved photon counting detector while taking into consideration interaction of X-rays, charge sharing and energy resolution, in Proceedings of 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (2018). https://doi.org/10.1109/NSSMIC.2018.8824417

    Chapter  Google Scholar 

  6. N. Kimoto, H. Hayashi, T. Asakawa, T. Asahara, T. Maeda, Y. Kanazawa, A. Katsumata, S. Yamamoto, M. Okada, Feasibility study of photon counting detector for producing effective atomic number image, in Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (2019)

    Google Scholar 

  7. T. Asakawa, H. Hayashi, N. Kimoto, T. Asahara, T. Maeda, S. Koyama, S. Yamamoto, M. Okada, Importance of considering the response function of photon counting detectors with the goal of precise material identification, in Proceedings of 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), (2019)

    Google Scholar 

  8. M. Sasaki, S. Koyama, Y. Kodera, R. Suzuki, H. Kimura, H. Nishide, M. Mizutani, M. Watanabe, N. Yoshida, H. Hayashi, N. Kimoto, S. Yamamoto, D. Hashimoto, M. Okada, A novel mammographic fusion imaging technique: the first results of tumor tissues detection from resected breast tissues using energy-resolved photon counting detector. SPIE Proc. 10948, 1094864 (2019). https://doi.org/10.1117/12.2512271

    Article  Google Scholar 

  9. N. Kimoto, H. Hayashi, T. Asahara, Y. Mihara, Y. Kanazawa, T. Yamakawa, S. Yamamoto, M. Yamasaki, M. Okada, Precise material identification method based on a photon counting technique with correction of the beam hardening effect in X-ray spectra. Appl. Radiat. Isot. 124, 16–26 (2017). https://doi.org/10.1016/j.apradiso.2017.01.049

    Article  Google Scholar 

  10. N. Kimoto, H. Hayashi, T. Asahara, Y. Kanazawa, T. Yamakawa, S. Yamamoto, M. Yamasaki, M. Okada, Development of a novel method based on a photon counting technique with the aim of precise material identification in clinical X-ray diagnosis, in Proceedings of SPIE 10132, (2017), p. 1013239-1-11. https://doi.org/10.1117/12.2253564

    Chapter  Google Scholar 

  11. G.F. Knoll, Radiation detection and measurement (John Wiley & Sons, Inc., Hoboken, ISBN-10: 0470649720, 2012)

    Google Scholar 

  12. N. Tsoulfanidis, S. Landsberger, Measurement and detection of radiation (CRC Press, Boca Raton, ISBN-10: 9781482215496, 2015)

    Book  Google Scholar 

  13. K. Maeda, M. Matsumoto, A. Taniguchi, Compton-scattering measurement of diagnostic x-ray spectrum using high-resolution Schottky CdTe detector. Med. Phys. 32, 1542–1547 (2005). https://doi.org/10.1118/1.1921647

    Article  Google Scholar 

  14. S. Miyajima, K. Imagawa, M. Matsumoto, CdZnTe detector in diagnostic X-ray spectroscopy. Med. Phys. 29, 1421–1429 (2002). https://doi.org/10.1118/1.1485975

    Article  Google Scholar 

  15. Y. Kojima, M. Shibata, H. Uno, K. Kawade, A. Taniguchi, Y. Kawase, K. Shizuma, A precise method of Qβ determination with small HPGe detector in an energy range of 1-9 MeV. Nucl. Inst. Methods Phys. Res. A 458, 656–669 (2001). https://doi.org/10.1016/S0168-9002(00)00899-8

    Article  Google Scholar 

  16. R. Ballabriga, M. Cambell, E. Heijne, X. Llopart, L. Tlustos, W. Wong, Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance. Nucl. Inst. Methods Phys. Res. A 633, S15–S18 (2011). https://doi.org/10.1016/j.nima.2010.06.108

    Article  Google Scholar 

  17. C. Ullberg, M. Urech, N. Weber, A. Engman, A. Redz, F. Henckel, Measurements of a dual-energy fast photon counting detector with integrated charge sharing correction, in Proceedings of SPIE 8668, 86680P-1-8, (2013). https://doi.org/10.1117/12.2007892

    Chapter  Google Scholar 

  18. A. Brambilla, P. Ouvrier-Buffer, J. Rinkel, G. Gonon, C. Boudou, CdTe linear pixel x-ray detector with enhanced spectrometric performance for high flux x-ray imaging. IEEE Nucl Sci Conf Record R18-5, 4825–4828 (2011)

    Google Scholar 

  19. A. Tomal, D.M. Cunha, M. Antoniassi, M.E. Poletti, Response functions of Si(Li), SDD and CdTe detectors for mammographic X-ray spectroscopy. Appl. Radiat. Isot. 70, 1355–1359 (2012). https://doi.org/10.1016/j.apradiso.2011.11.044

    Article  Google Scholar 

  20. E. Storm, H.I. Israel, Photon cross sections from 1 keV to 100 MeV for elements Z = 1 to Z = 100. Nuclear Data Tables A7, 565–681 (1970)

    Article  Google Scholar 

  21. L. Tlustos, M. Campbell, C. Fröjdh, P. Kostamo, S. Nenonen, Characterisation of an epitaxial GaAs/Medipix2 detector using fluorescence photons. Nucl. Inst. Methods Phys. Res. A 591, 42–45 (2008). https://doi.org/10.1016/j.nima.2008.03.020

    Article  Google Scholar 

  22. T.E. Everhart, P.H. Hoff, Determination of kilovolt electron energy dissipation vs penetration distance in solid materials. J. Appl. Phys. 42, 5837 (1971). https://doi.org/10.1063/1.1660019

    Article  Google Scholar 

  23. R.B. Firestone, V.S. Shirley, Table of isotopes, 8th edn. (John Wiley and Sons, Inc., Hoboken, ISBN 0471-14918-7, 1998)

    Google Scholar 

  24. H. Hirayama, Y. Namito, Z.F. Bielajew, S.J. Wilderman, W.R. Nelson, The EGS5 code system. KEK Rep 2005-8, 1–418 (2005)

    Google Scholar 

  25. R. Birch, M. Marshall, Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys. Med. Biol. 24(3), 505–517 (1979)

    Article  Google Scholar 

  26. R.R. Carlton, A.M. Adler, Principles of Radiographic Imaging, 5th edn. (Delmar Cengage Learning, New York, ISBN-13: 978-1-4390-5872-5, 2003)

    Google Scholar 

  27. D.M. Tucker, G.T. Barnes, D.P. Chakraborty, Semiempirical model for generating tungsten target X-ray spectra. Med. Phys. 18(2), 211–218 (1991)

    Article  Google Scholar 

  28. J.P. Bissonnette, L.J. Schreiner, A comparison of semiempirical models for generating tungsten target x-ray spectra. Med. Phys. 19, 579–582 (1992). https://doi.org/10.1118/1.596848

    Article  Google Scholar 

  29. C. Ullberg, M. Urech, N. Weber, A. Engman, A. Redz, F. Henckel, Measurements of a dual-energy fast photon counting CdTe detector with integrated charge sharing correction. Proc. SPIE 8668, 86680P (2013). https://doi.org/10.1117/12.2007892

    Article  Google Scholar 

  30. K. Mathieson, M.S. Passmore, P. Seller, M.L. Prydderch, V. O’Shea, R.L. Bates, K.M. Smith, M. Rahman, Charge sharing in silicon pixel detectors. Nucl. Inst. Methods Phys. Res. A 487, 113–122 (2002). https://doi.org/10.1016/S0168-9002(02)00954-3

    Article  Google Scholar 

  31. P. Otfinowski, Spatial resolution and detection efficiency of algorithms for charge sharing compensation in single photon counting hybrid pixel detectors. Nucl. Inst. Methods Phys. Res. A 882, 91–95 (2017). https://doi.org/10.1016/j.nima.2017.10.092

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, H., Kimoto, N., Asahara, T., Asakawa, T., Lee, C., Katsumata, A. (2021). Radiation Detector Physics. In: Photon Counting Detectors for X-ray Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-62680-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62680-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62679-2

  • Online ISBN: 978-3-030-62680-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics