Skip to main content

Iatrogenic Hypothalamic Disorders

  • Chapter
  • First Online:
The Human Hypothalamus

Abstract

Hypothalamic diseases cause secretory dysfunction of its releasing hormones subsequently resulting in hypopituitarism. Knowledge of the hypothalamic nuclei, fibers, connections, and their specific functions guide the clinician on potential consequences with hypothalamic disorders. Etiologies for hypothalamic conditions range from malignancy, autoimmune conditions, infection, trauma, functional, vascular insufficiency, and iatrogenic, among others. Iatrogenic hypothalamic disorders can be classified according to the general treatment and/or diagnostic modality the patient was exposed to resulting in hypothalamic disorder. Knowledge of these specific modalities can potentially guide planning for diagnostics and treatment approaches involving the hypothalamus. This chapter focuses on iatrogenic hypothalamic disorders due to medical or non-surgical and surgical testing, pharmaceuticals, or procedures and will provide insight on how to potentially prevent or avoid these iatrogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peuskens J, Pani L, Detraux J, De Hert M. The effects of novel and newly approved antipsychotics on serum prolactin levels: a comprehensive review. CNS Drugs. 2014;28(5):421–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Halbreich U, Kinon BJ, Gilmore JA, Kahn LS. Elevated prolactin levels in patients with schizophrenia: mechanisms and related adverse effects. Psychoneuroendocrinology. 2003;28(Suppl 1):53–67.

    Article  CAS  PubMed  Google Scholar 

  3. La Torre D, Falorni A. Pharmacological causes of hyperprolactinemia. Ther Clin Risk Manag. 2007;3(5):929–51.

    PubMed  PubMed Central  Google Scholar 

  4. Molitch ME. Disorders of prolactin secretion. Endocrinol Metab Clin N Amer. 2001;30:585–610.

    Article  CAS  Google Scholar 

  5. Molitch ME. Medication-induced hyperprolactinemia. Mayo Clin Proc. 2005;80(8):1050–7.

    Article  PubMed  Google Scholar 

  6. Gruen PG, Sachar EJ, Altman N, Langer G, Tabrizi MA, Halpern FS. Relation of plasma prolactin to clinical response in schizophrenic patients. Arch Gen Psychiatry. 1978;35(10):1222–7.

    Article  CAS  PubMed  Google Scholar 

  7. Green AI, Brown WA. Prolactin and neuroleptic drugs. Endocrinol Metab Clin North Am. 1988;17(1):213–23.

    Article  CAS  PubMed  Google Scholar 

  8. Wieck A, Haddad P. Hyperprolactinaemia caused by antipsychotic drugs. BMJ. 2002;324:250–2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maguire A. Prolactin elevation with antipsychotic medications: mechanisms of action and clinical consequences. J Clin Psychiatry. 2000;63(Suppl 4):56–62.

    Google Scholar 

  10. Schlösser R, Gründer G, Anghelescu I, Hillert A, Ewald-Gründer S, Hiemke C, Benkert O. Long-term effects of the substituted benzamide derivative amisulpride on baseline and stimulated prolactin levels. Neuropsychobiology. 2002;46(1):33–40.

    Article  PubMed  Google Scholar 

  11. Kühn KU, Meyer K, Maier W. Flupenthixol--a partial atypical neuroleptic? Fortschr Neurol Psychiatr. 2000;68(Suppl 1):S38–41.

    PubMed  Google Scholar 

  12. Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry. 2002;47(1):27–38.

    Article  PubMed  Google Scholar 

  13. Lieberman JA. Dopamine partial agonists: a new class of antipsychotic. CNS Drugs. 2004;18(4):251–67.

    Article  CAS  PubMed  Google Scholar 

  14. McKeage K, Plosker GL. Amisulpride: a review of its use in the management of schizophrenia. CNS Drugs. 2004;18(13):933–56.

    Article  CAS  PubMed  Google Scholar 

  15. Kleinberg DL, Davis JM, deCoster R, et al. Prolactin levels and adverse events in patients treated with risperidone. J Clin Psychopharmacol. 1999;19:57–61.

    Article  CAS  PubMed  Google Scholar 

  16. Kinon BJ, Gilmore JA, Liu H, et al. Prevalence of hyperprolactinemia in schizophrenic patients treated with conventional antipsychotic medications or risperidone. Psychoneuroendocrinology. 2003;28:55–68.

    Article  CAS  PubMed  Google Scholar 

  17. Kearns AE, Goff DC, Hayden DL, et al. Risperidone associated hyperprolactinemia. Endocr Pract. 2003;6:425–9.

    Article  Google Scholar 

  18. Volavka J, Czobor P, Cooper TB, et al. Prolactin levels in schizophrenia and schizoaffective disorder patients treated with clozapine, olanzapine, risperidone, or haloperidol. J Clin Psychiatry. 2004;65:57–61.

    Article  CAS  PubMed  Google Scholar 

  19. Breier AF, Malhotra AK, Su T-P, et al. Clozapine and risperidone in chronic schizophrenia: effects on symptoms, parkinsonian side effects, and neuroendocrine response. Am J Psychiatry. 1999;156:294–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kim K-S, Pae C-U, Hae J-H, et al. Effects of olanzapine on prolactin levels of female patients treated with schizophrenia treated with risperidone. J Clin Psychiatry. 2002;63:408–13.

    Article  CAS  PubMed  Google Scholar 

  21. Goff DC, Posever T, Herz L, et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol. 1998;18:296–304.

    Article  CAS  PubMed  Google Scholar 

  22. Casey DE, Carson WH, Saha AR, Aripiprazole Study Group, et al. Switching patients to aripiprazole from other antipsychotic agents: a multicenter randomized study. Psychopharmacology (Berl). 2003;166:391–39.

    Article  CAS  Google Scholar 

  23. Misra M, Papakostas GI, Klibanski A. Effects of psychiatric disorders and psychotropic medications on prolactin and bone metabolism. J Clin Psychiatry. 2004;65:1607–18.

    Article  CAS  PubMed  Google Scholar 

  24. Grunder G, Carlsson A, Wong DF. Mechanism of new antipsychotic medications. Occupancy is not just antagonism. Arch Gen Psychiatry. 2003;60:974–7.

    Article  PubMed  Google Scholar 

  25. Wieck A, Haddad PM. Antipsychotic-induced hyperprolactinaemia in women: pathophysiology, severity and consequences. Selective literature review. Br J Psychiatry. 2003;182:199–204.

    Article  CAS  PubMed  Google Scholar 

  26. Jones RB, Luscombe DK, Groom GV. Plasma prolactin concentrations in normal subjects and depressive patients following oral clomipramine. Postgrad Med J. 1977;53(Suppl 4):166–71.

    CAS  PubMed  Google Scholar 

  27. Slater SL, Lipper S, Shiling DJ, et al. Elevation of plasma prolactin by monoamine-oxidase inhibitors. Lancet. 1977;2:275–6.

    Article  CAS  PubMed  Google Scholar 

  28. Peterson MC. Reversible galactorrhea and prolactin elevation related to fluoxetine use. Mayo Clin Proc. 2001;76:215–6.

    Article  CAS  PubMed  Google Scholar 

  29. Shin SH, Obonsawin MC, Van Vugt DA, Baby N, Jhamandas K. Morphine can stimulate prolactin release independent of a dopaminergic mechanism. Can J Physiol Pharmacol. 1988;66(11):1381–5.

    Article  CAS  PubMed  Google Scholar 

  30. Gudelsky GA, Porter JC. Morphine- and opioid peptide induced inhibition of the release of dopamine from tuberoinfundibular neurons. Life Sci. 1979;25:1697–702.

    Article  CAS  PubMed  Google Scholar 

  31. Lafuente A, Marco J, Esquifino AI. Opioids and the pulsatile prolactin secretory pattern: effects of hyperprolactinemia. Vet Hum Toxicol. 1994;36(6):524–8.

    CAS  PubMed  Google Scholar 

  32. Bart G, Borg L, Schluger JH, Green M, Ho A, Kreek MJ. Suppressed prolactin response to dynorphin A1–13 in methadone-maintained versus control subjects. J Pharmacol Exp Ther. 2003;306(2):581–7.

    Article  CAS  PubMed  Google Scholar 

  33. Tamagna EI, Lane W, Hershman JM, Carlson HE, Sturdevant RA, Poland RE, Rubin RT. Effect of chronic metoclopramide therapy on serum pituitary hormone concentrations. Horm Res. 1979;11(4):161–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fujino T, Kato H, Yamashita S, Aramaki S, Morioka H, Koresawa M, Miyauchi F, Toyoshima H, Torigoe T. Effects of domperidone on serum prolactin levels in human beings. T Endocrinol Jpn. 1980;27(4):521–5.

    Article  CAS  Google Scholar 

  35. Steiner J, Cassar J, Mashiter K, Dawes I, Fraser TR, Breckenridge A. Effects of methyldopa on prolactin and growth hormone. Br Med J. 1976;1(6019):1186–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee PA, Kelly MR, Wallin JD. Increased prolactin levels during reserpine treatment of hypertensive patients. JAMA. 1976;235(21):2316–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kelley SR, Kamal TJ, Molitch ME. Mechanism of verapamil calcium channel blockade-induced hyperprolactinemia. Am J Physiol. 1996;270(1 Pt 1):E96–100.

    CAS  PubMed  Google Scholar 

  38. Romeo JH, Dombrowski R, Kwak YS, Fuehrer S, Aron DC. Hyperprolactinaemia and verapamil: prevalence and potential association with hypogonadism in men. Clin Endocrinol (Oxf). 1996;45(5):571–5.

    Article  CAS  Google Scholar 

  39. Barbieri C, Larovere MT, Mariotti G, Ferrari C, Caldara R. Prolactin stimulation by intravenous labetalol is mediated inside the central nervous system. Clin Endocrinol (Oxf). 1982;16(6):615–9.

    Article  CAS  Google Scholar 

  40. Perret G, Hugues JN, Louchahi M, Varoquaux O, Modigliani E. Effect of a short-term oral administration of cimetidine and ranitidine on the basal and thyrotropin-releasing hormone-stimulated serum concentrations of prolactin, thyrotropin and thyroid hormones in healthy volunteers. A double-blind cross-over study. Pharmacology. 1986;32(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  41. Knigge UP. Histaminergic regulation of prolactin secretion. Dan Med Bull. 1990;37(2):109–24.

    CAS  PubMed  Google Scholar 

  42. Morosini PP, Campanella N, Ghirelli S, Pellegrini F, Testa I, De Martinis C. Cimetidine and hyperprolactinemia. Boll Soc Ital Biol Sper. 1979;55(1):14–7.

    CAS  PubMed  Google Scholar 

  43. Sibilia V, Netti C, Guidobono F, Pagani F, Pecile A. Cimetidine-induced prolactin release: possible involvement of the GABA-ergic system. Neuroendocrinology. 1985;40(3):189–92.

    Article  CAS  PubMed  Google Scholar 

  44. Risch SC, Janowsky DS, Siever LJ, Judd LJ, Rausch JL, Huey LY, Beckman KA, Cohen RM, Murphy DL. Correlated cholinomimetic-stimulated beta-endorphin and prolactin release in humans. Peptides. 1982;3(3):319–22.

    Article  CAS  PubMed  Google Scholar 

  45. De Felice F, Pranno N, Marampon F, Musio D, Salducci M, Polimeni A, Tombolini V. Immune check-point in glioblastoma multiforme. Crit Rev Oncol Hematol. 2019;138:60–9.

    Article  PubMed  Google Scholar 

  46. De Felice F, Marchetti C, Palaia I, Musio D, Muzii L, Tombolini V, Panici PB. Immunotherapy of ovarian cancer: the role of checkpoint inhibitors. J Immunol Res. 2015;2015:191832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. De Felice F, Musio D, Cassese R, Gravina GL, Tombolini V. New approaches in glioblastoma multiforme: the potential role of immune-check point inhibitors. Curr Cancer Drug Targets. 2017;17(3):282–9.

    Article  PubMed  CAS  Google Scholar 

  48. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Girotra M, Hansen A, Farooki A, Byun D, Min L, Creelan BC, Callahan MK, Atkins MB, Sharon E, Antonia SJ, West P, Gravell AE, Investigational Drug Steering Committee (IDSC) Immunotherapy Task Force Collaboration. The current understanding of the endocrine effects from immune checkpoint inhibitors and recommendations for management. JNCI Cancer Spectr. 2018;2(3):pky021.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gonzàlez-Rodriguez E, Rodríguez-Abreu, on behalf of the Spanish Group for Cancer Immuno-Biotherapy (GETICA). Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist. 2016;21(7):804–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Neary N, Nieman L. Adrenal insufficiency: etiology, diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 2010;17:217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res. 2019;51(3):145–56.

    Article  PubMed  CAS  Google Scholar 

  53. Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy – immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13(4):195–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45.

    Article  PubMed  CAS  Google Scholar 

  55. Faje AT, Sullivan R, Lawrence D, et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab. 2014;99:4078–85.

    Article  CAS  PubMed  Google Scholar 

  56. Albarel F, Gaudy C, Castinetti F, et al. Long-term follow-up of ipilimumab-induced hypophysitis, a common adverse event of the anti-CTLA-4 antibody in melanoma. Eur J Endocrinol. 2015;172:195–204.

    Article  CAS  PubMed  Google Scholar 

  57. Chan TY. Drug-induced syndrome of inappropriate antidiuretic hormone secretion. Causes, diagnosis and management. Drugs Aging. 1997;11(1):27–44.

    Article  CAS  PubMed  Google Scholar 

  58. Shepshelovich D, Schechter A, Calvarysky B, Diker-Cohen T, Rozen-Zvi B, Gafter-Gvili A. Medication-induced SIADH: distribution and characterization according to medication class. Br J Clin Pharmacol. 2017;83(8):1801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bartter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med. 1967;42:790–806.

    Article  CAS  PubMed  Google Scholar 

  60. Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis. 2008;52(1):144–53.

    Article  CAS  PubMed  Google Scholar 

  61. Spital A. Diuretic-induced hyponatremia. Am J Nephrol. 1999;19:447–52.

    Article  CAS  PubMed  Google Scholar 

  62. Ghose RR. Plasma arginine vasopressin in hyponatraemic patients receiving diuretics. Postgrad Med J. 1985;61:1043–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sonnenblick M, Rosin AI. Significance of the measurement of uric acid fractional clearance in diuretic induced hyponatraemia. Postgrad Med J. 1986;62:449–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fichman MP, Vorherr H, Kleeman CR, et al. Diuretic-induced hyponatremia. Ann Intern Med. 1971;75:853–63.

    Article  CAS  PubMed  Google Scholar 

  65. Clark BA, Shannon RP, Rosa RM, Epstein FH. Increased susceptibility to thiazide-induced hyponatremia in the elderly. J Am Soc Nephrol. 1994;5:1106–11.

    Article  CAS  PubMed  Google Scholar 

  66. Jose CJ, Perez-Cruet J. Incidence and morbidity of self-induced water intoxication in state mental hospital patients. Am J Psychiatry. 1979;136:221–2.

    Article  CAS  PubMed  Google Scholar 

  67. Jacob S, Spinler SA. Hyponatremia associated with selective serotonin-reuptake inhibitors in older adults. Ann Pharmacother. 2006;40:1618–22.

    Article  CAS  PubMed  Google Scholar 

  68. Van Amelsvoort T, Bakshi R, Devaux CB, Schwabe S. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia. 1994;35:181–8.

    Article  PubMed  Google Scholar 

  69. Nielsen OA, Johannessen AC, Bardrum B. Oxcarbazepine-induced hyponatremia, a cross-sectional study. Epilepsy Res. 1988;2:269–71.

    Article  CAS  PubMed  Google Scholar 

  70. DeFronzo RA, Braine H, Colvin M, Davis PJ. Water intoxication in man after cyclophosphamide therapy. Time course and relation to drug activation. Ann Intern Med. 1973;78:861–9.

    Article  CAS  PubMed  Google Scholar 

  71. Bressler RB, Huston DP. Water intoxication following moderate-dose intravenous cyclophosphamide. Arch Intern Med. 1985;145:548–9.

    Article  CAS  PubMed  Google Scholar 

  72. Robertson GL, Bhoopalam N, Zelkowitz LJ. Vincristine neurotoxicity and abnormal secretion of antidiuretic hormone. Arch Intern Med. 1973;132:717–20.

    Article  CAS  PubMed  Google Scholar 

  73. RaviKumar TS, Grage TB. The syndrome of inappropriate antidiuretic hormone secretion secondary to vinblastine-bleomycin therapy. J Surg Oncol. 1983;24:242–5.

    Article  CAS  PubMed  Google Scholar 

  74. Giaccone G, Donadio M, Ferrati P, et al. Disorders of serum electrolytes and renal function in patients treated with cis-platinum on an outpatient basis. Eur J Cancer Clin Oncol. 1985;21:433–7.

    Article  CAS  PubMed  Google Scholar 

  75. Moses AM, Numann P, Miller M. Mechanism of chlorpropamide-induced anti-diuresis in man: evidence for release of ADH and enhancement of peripheral action. Metabolism. 1973;22:59–66.

    Article  CAS  PubMed  Google Scholar 

  76. Noble EE, Wang Z, Liu CM, Davis EA, Suarez AN, Stein LM, Tsan L, Terrill SJ, Hsu TM, Jung AH, Raycraft LM, Hahn JD, Darvas M, Cortella AM, Schier LA, Johnson AW, Hayes MR, Holschneider DP, Kanoski SE. Hypothalamus-hippocampus circuitry regulates impulsivity via melanin-concentrating hormone. Nat Commun. 2019;10(1):4923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P. Functional identification of an aggression locus in the mouse hypothalamus. Nature. 2011;470:221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kelley BJ, Duker AP, Chiu P. Dopamine agonists and pathologic behaviors. Parkinsons Dis. 2012;2012:603631.

    PubMed  PubMed Central  Google Scholar 

  79. Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shopping associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014;174(12):1930–3.

    Article  PubMed  Google Scholar 

  80. Kurz A. Physiology of thermoregulation. Best Pract Res Clin Anaesthesiol. 2008;22:627–44.

    Article  PubMed  Google Scholar 

  81. Buggy DJ, Crossley AW. Thermoregulation, mild perioperative hypothermia and postanaesthetic shivering. Br J Anaesth. 2000;84:615–28.

    Article  CAS  PubMed  Google Scholar 

  82. Pileggi DJ, Cook AM. Neuroleptic malignant syndrome. Ann Pharmacother. 2016;50(11):973–81.

    Article  CAS  PubMed  Google Scholar 

  83. Pesola GR, Quinto C. Prochlorperazine- induced neuroleptic malignant syndrome. J Emerg Med. 1996;14:727–9.

    Article  CAS  PubMed  Google Scholar 

  84. Nonino F, Campomori A. Neuroleptic malignant syndrome associated with metoclopramide. Ann Pharmacother. 1999;33:644–5.

    Article  CAS  PubMed  Google Scholar 

  85. Ratan DA, Smith AH. Neuroleptic malignant syndrome secondary to droperidol. Biol Psychiatry. 1993;34:421–2.

    Article  CAS  PubMed  Google Scholar 

  86. Levenson JL. Neuroleptic malignant syndrome. Am J Psychiatry. 1985;142:1137–45.

    Article  CAS  PubMed  Google Scholar 

  87. Gurrera RJ. Sympathoadrenal hyperactivity and the etiology of neuroleptic malignant syndrome. Am J Psychiatry. 1999;156:169–8.

    Article  CAS  PubMed  Google Scholar 

  88. Musselman ME, Saely S. Diagnosis and treatment of drug-induced hyperthermia. Am J Health Syst Pharm. 2013;70(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  89. Hadad E, Weinbroum AA, Ben-Abraham R. Drug-induced hyperthermia and muscle rigidity: a practical approach. Eur J Emerg Med. 2003;10(2):149–54.

    Article  PubMed  Google Scholar 

  90. Eyer F, Zilker T. Bench-to-bedside review: mechanisms and management of hyperthermia due to toxicity. Crit Care. 2007;11(6):236.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jamshidi N, Dawson A. The hot patient: acute drug-induced hyperthermia. Aust Prescr. 2019;42(1):24–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wener KM, Morales CR, Brawer JR. The effect of estradiol-induced hypothalamic pathology on sulfated glycoprotein-2 (clusterin) expression in the hypothalamus. Brain Res. 1997;745(1–2):37–45.

    Article  CAS  PubMed  Google Scholar 

  93. Hernandez L, Parada M, Hoebel BG. Amphetamine-induced hyperphagia and obesity caused by intraventricular or lateral hypothalamic injections in rats. J Pharamacol Exp Ther. 1983;227(2):524–30.

    CAS  Google Scholar 

  94. Yano S, Hide T, Shinojima N. Surgical outcomes of endoscopic endonasal skull base surgery of craniopharyngiomas evaluated according to the degree of hypothalamic extension. World Neurosurg. 2017;100:288–96.

    Article  PubMed  Google Scholar 

  95. Theodros D, Patel M, Ruzevick J, Lim M, Bettegowda C. Pituitary adenomas: historical perspective, surgical management and future directions. CNS Oncol. 2015;4(6):411–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ciric I, Ragin A, Baumgartner C, Pierce D. Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery. 1997;40(2):225–36; discussion 236–227.

    Article  CAS  PubMed  Google Scholar 

  97. Barbosa DN, de Oliveira-Souza R, Monte Santo F, de Oliveira Faria A, Gorgulho AA, De Salles AF. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg Focus FOC. 2017;43(3):E15. Retrieved Jan 7, 2020, from https://thejns.org/focus/view/journals/neurosurg-focus/43/3/article-pE15.xml.

    Article  Google Scholar 

  98. Lemaire JJ, Frew AJ, McArthur D, Gorgulho AA, Alger JR, Salomon N, Chen C, Behnke EJ, De Saalles AA. White matter connectivity of human hypothalamus. Brain Res. 2011;1371:43–64.

    Article  CAS  PubMed  Google Scholar 

  99. Lemaire JJ, Nezzar H, Sakka L, Boirie Y, Fontaine D, Coste A, Coll G, Sontheimer A, Sarret C, Gabrillargues J, De Salles A. Maps of the adult human hypothalamus. Surg Neurol Int. 2013;4(Suppl 3):S156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pop MG, Crivii C, Opincariu I. Anatomy and function of the hypothalamus, hypothalamus in health and diseases. In: Baloyannis SJ, Gordeladze JO, editors. IntechOpen. November 5th 2018. https://doi.org/10.5772/intechopen.80728. Available from: https://www.intechopen.com/books/hypothalamus-in-health-and-diseases/anatomy-and-function-of-the-hypothalamus.

  101. Goiveia FV. Amygdala and hypothalamus. The human hypothalamus. Basic and clinical aspects. Part II: neuropathology of the hypothalamus and adjacent brain structures. In: Dick S, editor. Handbook of clinical neurology, vol. 80. Amsterdam: Elsevier; 2004. p. 597.

    Google Scholar 

  102. Swaab DF. The human hypothalamus. Basic and clinical aspects. Part II: neuropathology of the hypothalamus and adjacent brain structures. In: Dick S, editor. Handbook of clinical neurology, vol. 80. Amsterdam: Elsevier; 2004. p. 597.

    Google Scholar 

  103. Wilson CB, Rand RW, Grollmus JM, Heurser G, Levin S, Goldfield E, Schneider V, Linfoot J, Hosobuchi Y. Surgical experience with a microscopic transsphenoidal approach to pituitary tumors and non-neoplastic parasellar conditions. Calif Med. 1972;117(5):1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Grosvenor AE, Laws ER. The evolution of extracranial approaches to the pituitary and anterior skull base. Pituitary. 2008;11(4):337–45.

    Article  PubMed  Google Scholar 

  105. Lindholm J. A century of pituitary surgery: Schloffer’s legacy. Neurosurgery. 2007;61(4):865–7; discussion 867–868.

    Article  PubMed  Google Scholar 

  106. Cavallo LM, Somma T, Solari D, Iannuzzo G, Frio F, Baiano C, Cappabianca P. Endoscopic endonasal transsphenoidal surgery: history and evolution. World Neurosurg. 2019;127:686–94.

    Article  PubMed  Google Scholar 

  107. Jane JA Jr, Han J, Prevedello DM, Jagannathan J, Dumont AS, Laws ER Jr. Perspectives on endoscopic transsphenoidal surgery. Neurosurg Focus. 2005;19(6):E2.

    Article  PubMed  Google Scholar 

  108. Joshi SM, Cudlip S. Transsphenoidal surgery. Pituitary. 2008;11(4):353–60.

    Article  PubMed  Google Scholar 

  109. Liu JK, Cohen-Gadol AA, Laws ER Jr, Cole CD, Kan P, Couldwell WT. Harvey Cushing and Oskar Hirsch: early forefathers of modern transsphenoidal surgery. J Neurosurg. 2005;103(6):1096–104.

    Article  PubMed  Google Scholar 

  110. Cappabianca P, de Divitiis E. Back to the Egyptians: neurosurgery via the nose. A five-thousand year history and the recent contribution of the endoscope. Neurosurg Rev. 2007;30(1):1–7; discussion 7.

    Article  PubMed  Google Scholar 

  111. Hardy J, Wigser SM. Trans-sphenoidal surgery of pituitary fossa tumors with televised radiofluoroscopic control. J Neurosurg. 1965;23(6):612–9.

    Article  CAS  PubMed  Google Scholar 

  112. Reuter M. The historical development of endophotography. World J Urol. 2000;18(4):299–302.

    Article  CAS  PubMed  Google Scholar 

  113. Sgouros S. Man-to-machine interface in neuroendoscopy: the importance of human interface in the development of neuroendoscopy. In: Sgouros S, editor. Neuroendoscopy. Berlin, Heidelberg: Springer; 2014.

    Chapter  Google Scholar 

  114. Dubourg J, Jouanneau E, Messerer M. Pituitary surgery: legacies from the past. Acta Neurochir. 2011;153(12):2397–402.

    Article  PubMed  Google Scholar 

  115. Jankowski R, Auque J, Simon C, Marchal JC, Hepner H, Wayoff M. Endoscopic pituitary tumor surgery. Laryngoscope. 1992;102(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  116. Rodziewicz GS, Chuang WC. Endoscopic removal of organized chronic subdural hematoma. Surg Neurol. 1995;43(6):569–72; discussion 572–563.

    Article  CAS  PubMed  Google Scholar 

  117. Sethi DS, Pillay PK. Endoscopic management of lesions of the sella turcica. J Laryngol Otol. 1995;109(10):956–62.

    Article  CAS  PubMed  Google Scholar 

  118. Li K, Nelson C, Suk I, Jallo G. Neuroendoscopy: past, present, and future. Neurosurg Focus. 2005;19(6):1092-0684.

    Article  Google Scholar 

  119. Azab WA. Neuroendoscopy in Kuwait: evolution, current status, and future directions. World Neurosurg. Elsevier. 2016–8;92:1878–8750.

    Google Scholar 

  120. Conrad JJ. Binostril versus mononostril approaches in endoscopic transsphenoidal pituitary surgery: clinical evaluation and cadaver study. J Neurosurg. 2016;125(2):0022–3085.

    Article  Google Scholar 

  121. Carrau RL, Jho HD, Ko Y. Transnasal-transsphenoidal endoscopic surgery of the pituitary gland. Laryngoscope. 1996;106:914–8.

    Article  CAS  PubMed  Google Scholar 

  122. Cappabianca P, Decq P, Schroeder HW. Future of endoscopy in neurosurgery. Surg Neurol. 2007;67:496–8.

    Article  PubMed  Google Scholar 

  123. Zada G, Du R, Laws ER Jr. Defining the “edge of the envelope”: patient selection in treating complex sellar-based neoplasms via transsphenoidal versus open craniotomy. J Neurosurg. 2011;114(2):286–300.

    Article  PubMed  Google Scholar 

  124. Decker RE, Chalif DJ. Progressive coma after the transsphenoidal decompression of a pituitary adenoma with marked suprasellar extension: report of two cases. Neurosurgery. 1991;28(1):154–7; discussion 157–158.

    Article  CAS  PubMed  Google Scholar 

  125. Puget S, Garnett M, Wray A, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg. 2007;106(1 Suppl):3–12.

    PubMed  Google Scholar 

  126. Müller HL, Gebhardt U, Etavard-Gorris N, Korenke E, Warmuth-Metz M, Kolb R, Sorensen N, Calaminus G. Prognosis and sequela in patients with childhood craniopharyngioma—results of HIT-ENDO and update on KRANIOPHARYNGEOM 2000. Klin Padiatr. 2004;216(6):343–8. https://doi.org/10.1055/s-2004-832339.

    Article  PubMed  Google Scholar 

  127. de Vile CJ, Grant DB, Hayward RD, Kendall BE, Neville BG, Stanhope R. Obesity in childhood craniopharyngioma: relation to post-operative hypothalamic damage shown by magnetic resonance imaging. J Clin Endocrinol Metab. 1996;81(7):2734–7.

    PubMed  Google Scholar 

  128. Merchant TE, Kiehna EN, Sanford RA, Mulhern RK, Thompson SJ, Wilson MW, Lustig RH, Kun LE. Craniopharyngioma: the St. Jude Children’s Research Hospital experience 1984–2001. Int J Radiat Oncol Biol Phys. 2002;53(3):533–42.

    Article  PubMed  Google Scholar 

  129. Poretti A, Grotzer MA, Ribi K, Schonle E, Boltshauser EA. Outcome of craniopharyngioma in children: long-term complications and quality of life. Dev Med Child Neurol. 2004;46(4):220–9.

    Article  PubMed  Google Scholar 

  130. Gerganov V, Metwali H, Samii A, Fahlbusch R, Samii M. Microsurgical resection of extensive craniopharyngiomas using a frontolateral approach: operative technique and outcome. J Neurosurg. 2014;120:559–70.

    Article  PubMed  Google Scholar 

  131. Hori T, Kawamata T, Amano K, Aihara Y, Ono M, Miki N. Anterior interhemispheric approach for 100 tumors in and around the anterior third ventricle. Neurosurgery. 2010;66:65–74.

    PubMed  Google Scholar 

  132. Kunihiro N, Goto T, Ishibashi K, Ohata K. Surgical outcomes of the minimum anterior and posterior combined transpetrosal approach for resection of retrochiasmatic craniopharyngiomas with complicated conditions. J Neurosurg. 2014;120:1–11.

    Article  PubMed  Google Scholar 

  133. Matsuo T, Kamada K, Izumo T, Nagata I. Unilateral basal interhemispheric approach through the sphenoid sinus to retrochiasmatic and intrasellar craniopharyngiomas: surgical technique and results. World Neurosurg. 2014;82:799–805.

    Article  PubMed  Google Scholar 

  134. David SX, Chen T, Hlubek RJ, Bristol RE, Smith KA, Ponce FA, Kerrigan JF, Nakaji P. Magnetic resonance imaging-guided laser interstitial thermal therapy for the treatment of hypothalamic hamartomas: a retrospective review. Neurosurgery. 2018;83(6):1183–92. https://doi.org/10.1093/neuros/nyx604.

    Article  Google Scholar 

  135. Hardy J. Transsphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg. 1969;16:185–217.

    Article  CAS  PubMed  Google Scholar 

  136. Hardy J. Transsphenoidal hypophysectomy. 1971. J Neurosurg. 2007;107(2):458–71.

    Article  PubMed  Google Scholar 

  137. Louis RG, Eisenberg A, Barkhoudarian G, Griffiths C, Kelly DF. Evolution of minimally invasive approaches to the sella and parasellar region. Int Arch Otorhinolaryngol. 2014;18(Suppl. 2):136–48. https://doi.org/10.1055/s-0034-1395265.

    Article  Google Scholar 

  138. Singh H, Essayed WI, Cohen-Gadol A, Zada G, Schwartz TH. Resection of pituitary tumors: endoscopic versus microscopic. J Neurooncol. 2016;130(2):309–17.

    Article  PubMed  Google Scholar 

  139. Er U, Gurses L, Saka C, et al. Sublabial transseptal approach to pituitary adenomas with special emphasis on rhinological complications. Turk Neurosurg. 2008;18(4):425–30.

    PubMed  Google Scholar 

  140. Rolston JD, Han SJ, Aghi MK. Nationwide shift from microscopic to endoscopic transsphenoidal pituitary surgery. Pituitary. 2016;19(3):248–50.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wardas P, Tymowski M, Piotrowska-Seweryn A, Markowski J, Ładziński P. Hadad-Bassagasteguy flap in skull base reconstruction - current reconstructive techniques and evaluation of criteria used for qualification for harvesting the flap. Wideochirurgia i inne techniki maloinwazyjne/Videosurg Other Miniinvasive Tech. 2019;14(2):340–7. https://doi.org/10.5114/wiitm.2018.79633.

    Article  PubMed  Google Scholar 

  142. Taylor DG, Jane JA, Oldfield EH. Resection of pituitary macroadenomas via the pseudocapsule along the posterior tumor margin: a cohort study and technical note. J Neurosurg. 2018;128(2):422–8.

    Article  PubMed  Google Scholar 

  143. Garcia-Navarro V, Anand VK, Schwartz TH. Gasket seal closure for extended endonasal endoscopic skull base surgery: efficacy in a large case series. World Neurosurg. 2013;80(5):563–8.

    Article  PubMed  Google Scholar 

  144. Müller HL, Gebhardt U, Teske C, Faldum A, Zwiener I, WarmuthMetz M, Pietsch T, Pohl F, Sörensen N, Calaminus G, Study Committee of Kraniopharyngeom 2000. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial Kraniopharyngeom 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  145. Müller HL. Craniopharyngioma: long-term consequences of a chronic disease. Expert Rev Neurother. 2015;15(11):1241–4.

    Article  PubMed  CAS  Google Scholar 

  146. Mortini P, Gagliardi F, Bailo M, Spina A, Palangeli A, Falini A, Losa M. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine. 2016;51(1):148–62.

    Article  CAS  PubMed  Google Scholar 

  147. Rhoton AL Jr. The sellar region. Neurosurgery. 2002;51(4 Suppl):S335–74. Review. PubMed PMID: 12234453.

    PubMed  Google Scholar 

  148. Kurwale NS, Ahmad F, Suri A, Kale SS, Sharma BS, Mahapatra AK, Suri V, Sharma MC. Postoperative pituitary apoplexy: preoperative considerations toward preventing nightmare. Br J Neursurg. 2012;26(1):59–63.

    Article  Google Scholar 

  149. Hetelekidis S, Barnes PD, Tao ML, Fischer EG, Schneider L, Scott RM, Tarbell NJ. 20-year experience in childhood craniopharyngioma. Int J Radiat Oncol Biol Phys. 1993;27(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  150. Habrand JL, Ganry O, Couanet D, Rouxel V, Levy-Piedbois C, PierreKahn A, Kalifa C. The role of radiation therapy in the management of craniopharyngioma: a 25-year experience and review of the literature. Int J Radiat Oncol Biol Phys. 1999;44(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  151. Minniti G, Esposito V, Amichetti M, Enrici RM. The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev. 2009;32(2):125–32; discussion 132.

    Article  CAS  PubMed  Google Scholar 

  152. Savateev AN, Trunin YY, Mazerkina NA. Radiotherapy and radiosurgery in treatment of craniopharyngiomas. Zh Vopr Neirokhir Im N N Burdenko. 2017;81(3):94–106.

    Article  CAS  PubMed  Google Scholar 

  153. Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, et al. Evolving applications, technological challenges and future opportunities in neuromodulation: proceedings of the fifth annual deep brain stimulation think tank. Front Neurosci. 2018;11:734.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lee M, Korner J. Review of physiology, clinical manifestations, and management of hypothalamic obesity in humans. Pituitary. 2008;12(2):87–95.

    Article  CAS  Google Scholar 

  155. Perlemoine C, Macia F, Tison F, et al. Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson’s disease. Br J Nutr. 2005;93:191–8.

    Article  CAS  PubMed  Google Scholar 

  156. Macia F, Perlemoine C, Coman I, et al. Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord. 2004;19:206–12.

    Article  PubMed  Google Scholar 

  157. Montaurier C, Morio B, Bannier S, et al. Mechanisms of body weight gain in patients with Parkinson’s disease after subthalamic stimulation. Brain. 2007;130:1808.

    Article  CAS  PubMed  Google Scholar 

  158. Calleja-Castillo JM, Cruz-Aguilera DL, Manjarrez J, Velasco-Velázquez MA, Morales-Espinoza G, Moreno-Aguilar J, Hernández ME, Aguirre-Cruz L, Pavón L. Chronic deep brain stimulation of the hypothalamic nucleus in wistar rats alters circulatory levels of corticosterone and proinflammatory cytokines. Clin Dev Immunol. 2013;2013:698634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Berton AM, Gatti F, Penner F, Varaldo E, Prencipe N, Rumbolo F, Settanni F, et al. Early copeptin determination allows prompt diagnosis of post-neurosurgical central diabetes insipidus. Neuroendocrinology. 2020;110:525–34.

    Article  CAS  PubMed  Google Scholar 

  160. Lamas C, del Pozo C, Villabona C, Neuroendocrinology Group of the SEEN. Clinical guidelines for management of diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion after pituitary surgery. Endocrinol Nutr. 2014;61(4):e15–24.

    Article  PubMed  Google Scholar 

  161. Schreckinger M, Szerlip N, Mittal S. Diabetes insipidus following resection of pituitary tumors. Clin Neurol Neurosurg. 2013;115(2):121–6.

    Article  PubMed  Google Scholar 

  162. Chirardello F, Hopper N, Albanese A, Maghnie M. Diabetes insipidus after craniopharyngioma: postoperative management of water and electrolyte disorders. J Pediatr Endocrinol Metab. 2006;19(suppl 1):413–21.

    Google Scholar 

  163. Hensen J, Henig A, Fahlbusch R, Meyer M, Boehnert M, Buchfelder M. Prevalence, predictors and patterns of postoperative polyuria and hyponatremia in the immediate course after transsphenoidal surgery for pituitary adenomas. Clin Endocrinol (Oxf). 1999;50:431–9.

    Article  CAS  Google Scholar 

  164. Robinson AG, Verbalis JG. Posterior pituitary. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams textbook of endocrinology, vol. 11. Philadelphia: Saunders Elsevier; 2008. p. 273.

    Google Scholar 

  165. Popugaev KA, Savin IA, Goriachev AS, Kadashev BA. Hypothalamic injury as a cause of refractory hypotension after sellar region tumor surgery. Neurocrit Care. 2008;8(3):366–73.

    Article  CAS  PubMed  Google Scholar 

  166. Bealer SL. Vascular capacitance following preoptic recess lesions. Am J Physiol Heart Circ Physiol. 1993;264:H560–6.

    Article  CAS  Google Scholar 

  167. Brody MJ, Johnson AK. Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation, and hypertension. In: Martini L, Ganong WF, editors. Frontiers, neuroendocrinology. New York: Raven; 1980. p. 249–92.

    Google Scholar 

  168. Lind RW. Angiotensin and the lamina terminalis: illustrations of a complex unity. Clin Exp Hypertens A. 1988;10:79–105.

    PubMed  Google Scholar 

  169. Smith PM, Ferguson AV. Vasopressin acts in the subfornical organ to decrease blood pressure. Neuroendocrinology. 1997;66:130–5.

    Article  CAS  PubMed  Google Scholar 

  170. Lew SM. Temporary central hypoventilation following craniopharyngioma resection. J Pediatr Neurol. 2004;2(3):167–70.

    Google Scholar 

  171. Harper RM, Gozal D, Bandler R, Spriggs D, Lee J, Alger J. Regional brain activation in humans during respiratory and blood pressure challenges. Clin Exp Pharmacol Physiol. 1998;25:483–6.

    Article  CAS  PubMed  Google Scholar 

  172. Hrishi AP, Lionel KR. Intraoperative hyperthermia: a harbinger of hypothalamic injury. J Neurosurg Aneshtesiol. 2017;29(3):379–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zachary P. Wetsel or Christa O’ Hana S. Nobleza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wetsel, Z.P., Patel, R., Dios, R.R., Garla, V., Nobleza, C.O.H.S. (2021). Iatrogenic Hypothalamic Disorders. In: Uwaifo, G.I. (eds) The Human Hypothalamus. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-62187-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62187-2_22

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62186-5

  • Online ISBN: 978-3-030-62187-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics