Skip to main content

The Complex and Integral Roles of Pericytes Within the Neurovascular Unit in Health and Disease

  • Chapter
  • First Online:
Biology of Pericytes – Recent Advances

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

20-HETE:

20-hydroxyeicosatetraenoic acid

Aβ:

amyloid beta

AD :

Alzheimer’s disease

ALS :

amyotrophic lateral sclerosis

ApoE:

apolipoprotein E

α-SMA:

alpha-smooth muscle actin

ATP:

adenosine triphosphate

BBB :

blood-brain barrier

BOLD:

blood oxygen level dependent

CADASIL:

cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

CNS:

central nervous system

COX:

cyclooxygenase

CSF:

cerebrospinal fluid

DTA:

diptheria toxin A

fMRI:

functional magnetic resonance imaging

ICAM:

intracellular adhesion molecule

iDTR:

Cre-dependent human diptheria toxin receptor

IgG:

immunoglobulin G

IL:

interleukin

LRP-1:

low density lipoprotein receptor-related protein 1

MHC:

major histocompatibility complex

MMP9:

matrix metalloprotease 9

MS :

multiple sclerosis

NADPH:

nicotinamide adenine dinucleotide phosphate

NF-κB:

nuclear factor-kappa B

NO:

nitric oxide

NOX4:

nicotinamide adenine dinucleotide phosphate oxidase 4

NVU :

neurovascular unit

OPC:

oligodendrocyte precursor cell

PDGF-BB:

platelet-derived growth factor-BB

PDGFRβ:

platelet-derived growth factor receptor beta

PGE2:

prostaglandin E2

sPDGFRβ:

soluble platelet-derived growth factor receptor beta

TGFβ:

transforming growth factor beta

TGFβR2:

transforming growth factor beta receptor 2

TNFα:

tumor necrosis factor alpha

VCAM:

vascular cell adhesion molecule

VEGF:

vascular endothelial growth factor

VEGFR2:

vascular endothelial growth factor receptor 2

VSMC:

vascular smooth muscle cell

References

  • Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kilic K, Can A, DI Polo A, Dalkara T (2018) Capillary pericytes express alpha-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. elife 7

    Google Scholar 

  • Aly AE, Harmon B, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Yurek DM, Waszczak BL (2019) Intranasal delivery of hGDNF plasmid DNA nanoparticles results in long-term and widespread transfection of perivascular cells in rat brain. Nanomedicine 16:20–33

    Article  CAS  PubMed  Google Scholar 

  • Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52:437–453

    PubMed  PubMed Central  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  • Attrill E, Ramsay C, Ross R, Richards S, Sutherland BA, Keske MA, Eringa E, Premilovac D (2020) Metabolic-vascular coupling in skeletal muscle: A potential role for capillary pericytes? Clin Exp Pharmacol Physiol 47:520–528

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25:621–625

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attwell D, Mishra A, Hall CN, O’farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455

    Article  CAS  PubMed  Google Scholar 

  • Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, Johnson SC, Prabhakaran V (2011) Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):123–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Balbi M, Koide M, Wellman GC, Plesnila N (2017) Inversion of neurovascular coupling after subarachnoid hemorrhage in vivo. J Cereb Blood Flow Metab 37:3625–3634

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell RD, Winkler EA, Sagare AP, Singh I, Larue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485:512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiaume AA, Grant RI, Mcdowell KP, Underly RG, Hartmann DA, Levy M, Bhat NR, Shih AY (2018a) Dynamic remodeling of pericytes in vivo maintains capillary coverage in the adult mouse brain. Cell Rep 22:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY (2018b) Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci 10:210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biesecker KR, Srienc AI, Shimoda AM, Agarwal A, Bergles DE, Kofuji P, Newman EA (2016) Glial cell calcium signaling mediates capillary regulation of blood flow in the retina. J Neurosci 36:9435–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O (2014a) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014b) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Phys Cell Physiol 307:C25–C38

    Article  CAS  Google Scholar 

  • Bjarnegard M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, Takemoto M, Gustafsson E, Fassler R, Betsholtz C (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131:1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D (2013) The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 16:889–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracko O, Njiru BN, Swallow M, Ali M, Haft-Javaherian M, Schaffer CB (2019) Increasing cerebral blood flow improves cognition into late stages in Alzheimer’s disease mice. J Cereb Blood Flow Metab:271678X19873658

    Google Scholar 

  • Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA (2019) Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci 13:282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Fordsmann JC, Jensen SH, Gesslein B, Lonstrup M, Hald BO, Zambach SA, Brodin B, Lauritzen MJ (2018) Stimulation-induced increases in cerebral blood flow and local capillary vasoconstriction depend on conducted vascular responses. Proc Natl Acad Sci U S A 115:E5796–E5804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D (2018) Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136:507–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YK, Maki T, Mandeville ET, Koh SH, Hayakawa K, Arai K, Kim YM, Whalen MJ, Xing C, Wang X, Kim KW, Lo, E. H. (2016) Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med 22:1335–1341

    Article  CAS  PubMed  Google Scholar 

  • Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavacana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M (2017) Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev Rep 13:686–698

    Article  CAS  PubMed  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  CAS  PubMed  Google Scholar 

  • Courtney JM, Sutherland BA (2020) Harnessing the stem cell properties of pericytes to repair the brain. Neural Regen Res 15:1021–1022

    Article  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Cruz Hernandez JC, Bracko O, Kersbergen CJ, Muse V, Haft-Javaherian M, Berg M, Park L, Vinarcsik LK, Ivasyk I, Rivera DA, Kang Y, Cortes-Canteli M, Peyrounette M, Doyeux V, Smith A, Zhou J, Otte G, Beverly JD, Davenport E, Davit Y, Lin CP, Strickland S, Iadecola C, Lorthois S, Nishimura N, Schaffer CB (2019) Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models. Nat Neurosci 22:413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalkara T, Alarcon-Martinez L, Yemisci M (2019) Pericytes in Ischemic Stroke. Adv Exp Med Biol 1147:189–213

    Article  CAS  PubMed  Google Scholar 

  • Damisah EC, Hill RA, Tong L, Murray KN, Grutzendler J (2017) A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci 20:1023–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidoff MS (2019) The Pluripotent Microvascular Pericytes Are the Adult Stem Cells Even in the Testis. Adv Exp Med Biol 1122:235–267

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente AG, Lange S, Silva ME, Gonzalez GA, Tempfer H, van Wijngaarden P, Zhao C, di Canio L, Trost A, Bieler L, Zaunmair P, Rotheneichner P, O’sullivan A, Couillard-Despres S, Errea O, Mae MA, Andrae J, He L, Keller A, Batiz LF, Betsholtz C, Aigner L, Franklin RJM, Rivera FJ (2017) Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Rep 20:1755–1764

    Article  CAS  Google Scholar 

  • de la Torre JC (2012) Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012:367516

    PubMed  PubMed Central  Google Scholar 

  • Dehouck MP, Vigne P, Torpier G, Breittmayer JP, Cecchelli R, Frelin C (1997) Endothelin-1 as a mediator of endothelial cell-pericyte interactions in bovine brain capillaries. J Cereb Blood Flow Metab 17:464–469

    Article  CAS  PubMed  Google Scholar 

  • Dias Moura Prazeres PH, Sena IFG, Borges IDT, De Azevedo PO, Andreotti JP, De Paiva AE, De Almeida VM, De Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427:6–11

    Article  PubMed  CAS  Google Scholar 

  • Dong X (2018) Current Strategies for Brain Drug Delivery. Theranostics 8:1481–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan L, Zhang XD, Miao WY, Sun YJ, Xiong G, Wu Q, Li G, Yang P, Yu H, Li H, Wang Y, Zhang M, Hu LY, Tong X, Zhou WH, Yu X (2018) PDGFRbeta Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron 100:183-200 e8

    Article  PubMed  CAS  Google Scholar 

  • Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, Dekosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, DE Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    Article  PubMed  Google Scholar 

  • Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdener SE, Dalkara T (2019) Small vessels are a big problem in neurodegeneration and neuroprotection. Front Neurol 10:889

    Article  PubMed  PubMed Central  Google Scholar 

  • Faal T, Phan DTT, Davtyan H, Scarfone VM, Varady E, Blurton-Jones M, Hughes CCW, Inlay MA (2019) Induction of mesoderm and neural crest-derived pericytes from human pluripotent stem cells to study blood-brain barrier interactions. Stem Cell Reports 12:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farahani RM, Rezaei-Lotfi S, Simonian M, Xaymardan M, Hunter N (2019) Neural microvascular pericytes contribute to human adult neurogenesis. J Comp Neurol 527:780–796

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107:22290–22295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco M, Roswall P, Cortez E, Hanahan D, Pietras K (2011) Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood 118:2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Chang A, Chang L, Niessen K, Eapen S, Setiadi A, Karsan A (2009) Differential regulation of transforming growth factor beta signaling pathways by Notch in human endothelial cells. J Biol Chem 284:19452–19462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638

    Article  CAS  PubMed  Google Scholar 

  • Gaudin A, Yemisci M, Eroglu H, Lepetre-Mouelhi S, Turkoglu OF, Donmez-Demir B, Caban S, Sargon MF, Garcia-Argote S, Pieters G, Loreau O, Rousseau B, Tagit O, Hildebrandt N, LE Dantec Y, Mougin J, Valetti S, Chacun H, Nicolas V, Desmaele D, Andrieux K, Capan Y, Dalkara T, Couvreur P (2014) Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat Nanotechnol 9:1054–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautam J, Yao Y (2018) Roles of pericytes in stroke pathogenesis. Cell Transplant 27:1798–1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Geevarghese A, Herman IM (2014) Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res 163:296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N (2015) Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 78:887–900

    Article  CAS  PubMed  Google Scholar 

  • Grant RI, Hartmann DA, Underly RG, Berthiaume AA, Bhat NR, Shih AY (2019) Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab 39:411–425

    Article  PubMed  Google Scholar 

  • Grubb S, Cai C, Hald BO, Khennouf L, Murmu RP, Jensen AGK, Fordsmann J, Zambach S, Lauritzen M (2020) Precapillary sphincters maintain perfusion in the cerebral cortex. Nat Commun 11:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan YY, Luan X, Xu JR, Liu YR, Lu Q, Wang C, Liu HJ, Gao YG, Chen HZ, Fang C (2014) Selective eradication of tumor vascular pericytes by peptide-conjugated nanoparticles for antiangiogenic therapy of melanoma lung metastasis. Biomaterials 35:3060–3070

    Article  CAS  PubMed  Google Scholar 

  • Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, Zlokovic BV (2016) Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab 36:216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: A component of neurovascular coupling in health and disease. Front Neuroenerg 2:5

    Article  Google Scholar 

  • Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY (2015) Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2:041402

    Article  PubMed  PubMed Central  Google Scholar 

  • He L, Vanlandewijck M, Mae MA, Andrae J, Ando K, del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Segerstolpe A, Liu J, Gustafsson S, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci Data 5:180160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    Article  PubMed  CAS  Google Scholar 

  • Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Raschperger E, Mae MA, Jin S, Betsholtz C, Lendahl U (2015) Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol 35:409–420

    Article  CAS  PubMed  Google Scholar 

  • Herland A, VAN DER Meer AD, Fitzgerald EA, Park TE, Sleeboom JJ, Ingber DE (2016) Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. PLoS One 11:e0150360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth C, Sutherland BA, Choi HB, Martin C, Lind BL, Khennouf L, Ledue JM, Pakan JM, Ko RW, Ellis-Davies GC, Lauritzen MJ, Sibson NR, Buchan AM, Macvicar BA (2017) A critical role for astrocytes in hypercapnic vasodilation in brain. J Neurosci 37:2403–2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu E, Hu W, Yang A, Zhou H, Zhou J, Luo J, Wang Y, Tang T, Cui H (2019) Thrombin promotes pericyte coverage by Tie2 activation in a rat model of intracerebral hemorrhage. Brain Res 1708:58–68

    Article  CAS  PubMed  Google Scholar 

  • Isasi E, Olivera-Bravo S (2020) Pericytes in neurometabolic diseases. Curr Tissue Microenviron Rep

    Google Scholar 

  • Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC, Alzheimer’s Disease Neuroimaging, I (2016) Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M (2014) A role for human brain pericytes in neuroinflammation. J Neuroinflammation 11:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong JH, Sugii Y, Minamiyama M, Okamoto K (2006) Measurement of RBC deformation and velocity in capillaries in vivo. Microvasc Res 71:212–217

    Article  PubMed  Google Scholar 

  • Kang E, Shin JW (2016) Pericyte-targeting drug delivery and tissue engineering. Int J Nanomedicine 11:2397–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura H, Sugiyama T, Wu DM, Kobayashi M, Yamanishi S, Katsumura K, Puro DG (2003) ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina. J Physiol 551:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khennouf L, Gesslein B, Brazhe A, Octeau JC, Kutuzov N, Khakh BS, Lauritzen M (2018) Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain 141:2032–2046

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DS, Ronen I, Olman C, Kim SG, Ugurbil K, Toth LJ (2004) Spatial relationship between neuronal activity and BOLD functional MRI. NeuroImage 21:876–885

    Article  PubMed  Google Scholar 

  • Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, Boas DA, Sakadzic S, Zlokovic BV (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisler K, Nikolakopoulou AM, Sweeney MD, Lazic D, Zhao Z, Zlokovic BV (2020) Acute Ablation of Cortical Pericytes Leads to Rapid Neurovascular Uncoupling. Front Cell Neurosci 14:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloner RA, King KS, Harrington MG (2018) No-reflow phenomenon in the heart and brain. Am J Physiol Heart Circ Physiol 315:H550–H562

    Article  CAS  PubMed  Google Scholar 

  • Kornfield TE, Newman EA (2014) Regulation of blood flow in the retinal trilaminar vascular network. J Neurosci 34:11504–11513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovac A, Erickson MA, Banks WA (2011) Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 8:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensson K, Olsson Y (1973) Accumulation of protein tracers in pericytes of the central nervous system following systemic injection in immature mice. Acta Neurol Scand 49:189–194

    Article  CAS  PubMed  Google Scholar 

  • Lauretti E, Li JG, di Meco A, Pratico D (2017) Glucose deficit triggers tau pathology and synaptic dysfunction in a tauopathy mouse model. Transl Psychiatry 7:e1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal-Campanario R, Alarcon-Martinez L, Rieiro H, Martinez-Conde S, Alarcon-Martinez T, Zhao X, Lamee J, Popp PJ, Calhoun ME, Arribas JI, Schlegel AA, Stasi LL, Rho JM, Inge L, Otero-Millan J, Treiman DM, Macknik SL (2017) Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy. Sci Rep 7:43276

    Article  PubMed  PubMed Central  Google Scholar 

  • Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Puro DG (2001) Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 907:93–99

    Article  CAS  PubMed  Google Scholar 

  • Li F, Lan Y, Wang Y, Wang J, Yang G, Meng F, Han H, Meng A, Wang Y, Yang X (2011) Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev Cell 20:291–302

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Chen Y, Li B, Luo C, Zuo S, Liu X, Zhang JH, Ruan H, Feng H (2016) Hemoglobin induced NO/cGMP suppression Deteriorate Microcirculation via Pericyte Phenotype Transformation after Subarachnoid Hemorrhage in Rats. Sci Rep 6:22070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yang Y, Fan X (2020) Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 121:109633

    Article  PubMed  Google Scholar 

  • Loi M, Marchio S, Becherini P, di Paolo D, Soster M, Curnis F, Brignole C, Pagnan G, Perri P, Caffa I, Longhi R, Nico B, Bussolino F, Gambini C, Ribatti D, Cilli M, Arap W, Pasqualini R, Allen TM, Corti A, Ponzoni M, Pastorino F (2010) Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. J Control Release 145:66–73

    Article  CAS  PubMed  Google Scholar 

  • Lovick TA, Brown LA, Key BJ (1999) Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92:47–60

    Article  CAS  PubMed  Google Scholar 

  • Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO (2012) Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Zhao Z, Sagare AP, Wu Y, Wang M, Owens NC, Verghese PB, Herz J, Holtzman DM, Zlokovic BV (2018) Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-beta42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol Neurodegener 13:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macvicar BA, Newman EA (2015) Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol 7

    Google Scholar 

  • Maier CL, Pober JS (2011) Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses. Arterioscler Thromb Vasc Biol 31:183–189

    Article  CAS  PubMed  Google Scholar 

  • Mazare N, Gilbert A, Boulay AC, Rouach N, Cohen-Salmon M (2018) Connexin 30 is expressed in a subtype of mouse brain pericytes. Brain Struct Funct 223:1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Mcconnell HL, Kersch CN, Woltjer RL, Neuwelt EA (2017) The translational significance of the neurovascular unit. J Biol Chem 292:762–770

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Reynolds JP, Chen Y, Gourine AV, Rusakov DA, Attwell D (2016) Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nat Neurosci 19:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Matsuura T, Abe K (2011) Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 89:718–728

    Article  CAS  PubMed  Google Scholar 

  • Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, Barnes SR, Daianu M, Ramanathan A, Go A, Lawson EJ, Wang Y, Mack WJ, Thompson PM, Schneider JA, Varkey J, Langen R, Mullins E, Jacobs RE, Zlokovic BV (2018) Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 24:326–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT, National Institute ON, A. & Alzheimer’s, A (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A, Matsuyama T (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33:1962–1974

    Article  CAS  PubMed  Google Scholar 

  • Nation DA, Sweeney MD, Montagne A, Sagare AP, D’orazio LM, Pachicano M, Sepehrband F, Nelson AR, Buennagel DP, Harrington MG, Benzinger TLS, Fagan AM, Ringman JM, Schneider LS, Morris JC, Chui HC, Law M, Toga AW, Zlokovic BV (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25:270–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270:469–474

    Article  CAS  PubMed  Google Scholar 

  • Neuhaus AA, Couch Y, Sutherland BA, Buchan AM (2017a) Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J Cereb Blood Flow Metab 37:2013–2024

    Article  PubMed  Google Scholar 

  • Neuhaus AA, Sutherland BA, Buchan AM (2017b) Targeting pericytes and the microcirculation for ischemic stroke therapy. In: Lapchak PA, Zhang J (eds) Springer series in translational stroke research: neuroprotective therapy for stroke and ischemic disease. Springer

    Google Scholar 

  • Nikolakopoulou AM, Montagne A, Kisler K, Dai Z, Wang Y, Huuskonen MT, Sagare AP, Lazic D, Sweeney MD, Kong P, Wang M, Owens NC, Lawson EJ, Xie X, Zhao Z, Zlokovic BV (2019) Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat Neurosci 22:1089–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura A, Ago T, Kuroda J, Arimura K, Tachibana M, Nakamura K, Wakisaka Y, Sadoshima J, Iihara K, Kitazono T (2016) Detrimental role of pericyte Nox4 in the acute phase of brain ischemia. J Cereb Blood Flow Metab 36:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, Gong H, Richard-Loendt A, Huang W, Saito T, Saido TC, Brandner S, Sethi H, Attwell D (2019) Amyloid beta oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science 365

    Google Scholar 

  • Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13:788–794

    Article  PubMed  Google Scholar 

  • Ogay V, Kumasheva V, Baidosova S, Li Y, Shpekov A, Makhambetov Y, Kaliyev A, Zhetpisbayev B, Olzhayev F, Ramankulov Y (2017) Adipose-derived perivascular stem cells promote sensorimotor recovery after ischemic stroke in rats. J Biotechnol 256:S116

    Article  Google Scholar 

  • Ostergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, Iversen NK, Secher N, Engedal TS, Anzabi M, Jimenez EG, Cai C, Koch KU, Naess-Schmidt ET, Obel A, Juul N, Rasmussen M, Sorensen JC (2013) The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab 33:1825–1837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, Paul G (2014) Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol

    Google Scholar 

  • Padel T, Roth M, Gaceb A, Li JY, Bjorkqvist M, Paul G (2018) Brain pericyte activation occurs early in Huntington’s disease. Exp Neurol 305:139–150

    Article  CAS  PubMed  Google Scholar 

  • Pan P, Zhao H, Zhang X, Li Q, Qu J, Zuo S, Yang F, Liang G, Zhang JH, Liu X, He H, Feng H, Chen Y (2020) Cyclophilin a signaling induces pericyte-associated blood-brain barrier disruption after subarachnoid hemorrhage. J Neuroinflammation 17:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY (2017) Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 8:15296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne LB, Hoque M, Houk C, Darden J, Chappell JC (2020) Pericytes in vascular development. Curr Tissue Microenviron Rep 1:143–154

    Google Scholar 

  • Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen MA, Ryu JK, Chang KJ, Etxeberria A, Bardehle S, Mendiola AS, Kamau-Devers W, Fancy SPJ, Thor A, Bushong EA, Baeza-Raja B, Syme CA, Wu MD, Rios Coronado PE, Meyer-Franke A, Yahn S, Pous L, Lee JK, Schachtrup C, Lassmann H, Huang EJ, Han MH, Absinta M, Reich DS, Ellisman MH, Rowitch DH, Chan JR, Akassoglou K (2017) Fibrinogen activates BMP signaling in oligodendrocyte progenitor cells and inhibits remyelination after vascular damage. Neuron 96(1003-1012):e7

    Google Scholar 

  • Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ (2014) Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res 1550:1–8

    Article  CAS  PubMed  Google Scholar 

  • Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’acquisto F, Jones GE, Rowe D, Nourshargh S (2012) Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 209:1219–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Luo M, Wang C, Fan L, Yang SN, Cardenas M, Geng H, Leonard JP, Melnick A, Cerchietti L, Hajjar KA (2013) Imatinib disrupts lymphoma angiogenesis by targeting vascular pericytes. Blood 121:5192–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rucker HK, Wynder HJ, Thomas WE (2000) Cellular mechanisms of CNS pericytes. Brain Res Bull 51:363–369

    Article  CAS  PubMed  Google Scholar 

  • Rungta RL, Chaigneau E, Osmanski BF, Charpak S (2018) Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 99(362-375):e4

    Google Scholar 

  • Rustenhoven J, Jansson D, Smyth LC, Dragunow M (2017) Brain Pericytes As Mediators of Neuroinflammation. Trends Pharmacol Sci 38:291–304

    Article  CAS  PubMed  Google Scholar 

  • Ryu JK, Petersen MA, Murray SG, Baeten KM, Meyer-Franke A, Chan JP, Vagena E, Bedard C, Machado MR, Rios Coronado PE, Prod’homme T, Charo IF, Lassmann H, Degen JL, Zamvil SS, Akassoglou K (2015) Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 6:8164

    Article  PubMed  Google Scholar 

  • Sagare AP, Bell RD, Zhao ZE (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932

    Article  PubMed  CAS  Google Scholar 

  • Sagare AP, Sweeney MD, Makshanoff J, Zlokovic BV (2015) Shedding of soluble platelet-derived growth factor receptor-beta from human brain pericytes. Neurosci Lett 607:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz N, Byman E, Fex M, Wennstrom M (2017) Amylin alters human brain pericyte viability and NG2 expression. J Cereb Blood Flow Metab 37:1470–1482

    Article  CAS  PubMed  Google Scholar 

  • Schultz N, Brannstrom K, Byman E, Moussaud S, Nielsen HM, Netherlands Brain B, Olofsson A, Wennstrom M (2018) Amyloid-beta 1-40 is associated with alterations in NG2+ pericyte population ex vivo and in vitro. Aging Cell 17:e12728

    Google Scholar 

  • Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 23:303–310

    Article  PubMed  Google Scholar 

  • Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27:842–846

    Article  CAS  PubMed  Google Scholar 

  • Soriano P (1994) Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8:1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14:41–51

    Article  CAS  PubMed  Google Scholar 

  • Stebbins MJ, Gastfriend BD, Canfield SG, Lee MS, Richards D, Faubion MG, Li WJ, Daneman R, Palecek SP, Shusta EV (2019) Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties. Sci Adv 5:eaau7375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, Staufenbiel M, Huang LE, Song W (2006) Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A 103:18727–18732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Guo D, Su Y, Yu D, Wang Q, Wang T, Zhou Q, Ran X, Zou Z (2014) Hyperplasia of pericytes is one of the main characteristics of microvascular architecture in malignant glioma. PLoS One 9:e114246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF (2002) Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Investig 82:387–401

    Article  CAS  PubMed  Google Scholar 

  • Sutherland BA, Fordsmann JC, Martin C, Neuhaus AA, Witgen BM, Piilgaard H, Lonstrup M, Couch Y, Sibson NR, Lauritzen M, Buchan AM (2017) Multi-modal assessment of neurovascular coupling during cerebral ischaemia and reperfusion using remote middle cerebral artery occlusion. J Cereb Blood Flow Metab 37:2494–2508

    Article  PubMed  Google Scholar 

  • Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, Harrington MG, Pa J, Law M, Wang DJJ, Jacobs RE, Doubal FN, Ramirez J, Black SE, Nedergaard M, Benveniste H, Dichgans M, Iadecola C, Love S, Bath PM, Markus HS, Salman RA, Allan SM, Quinn TJ, Kalaria RN, Werring DJ, Carare RO, Touyz RM, Williams SCR, Moskowitz MA, Katusic ZS, Lutz SE, Lazarov O, Minshall RD, Rehman J, Davis TP, Wellington CL, Gonzalez HM, Yuan C, Lockhart SN, Hughes TM, Chen CLH, Sachdev P, O’brien JT, Skoog I, Pantoni L, Gustafson DR, Biessels GJ, Wallin A, Smith EE, Mok V, Wong A, Passmore P, Barkof F, Muller M, Breteler MMB, Roman GC, Hamel E, Seshadri S, Gottesman RF, Van Buchem MA, Arvanitakis Z, Schneider JA, Drewes LR, Hachinski V, Finch CE, Toga AW, Wardlaw JM, Zlokovic BV (2019a) Vascular dysfunction-The disregarded partner of Alzheimer’s disease. Alzheimers Dement 15:158–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019b) Blood-brain barrier: from physiology to disease and back. Physiol Rev 99:21–78

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Yamazaki Y, Liu CC, Bu, G. & Kanekiyo, T. (2018) Pericyte implantation in the brain enhances cerebral blood flow and reduces amyloid-beta pathology in amyloid model mice. Exp Neurol 300:13–21

    Article  CAS  PubMed  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    Article  CAS  PubMed  Google Scholar 

  • Tallquist MD, French WJ, Soriano P (2003) Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 1:E52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taylor JP, Brown RH, Jr. & Cleveland, D. W. (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas WE (1999) Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev 31:42–57

    Article  CAS  PubMed  Google Scholar 

  • Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY (2017) Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci 37:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Geest RJ, Klaassen I, Vogels IM, Van Noorden CJ, Schlingemann RO (2010) Differential TGF-{beta} signaling in retinal vascular cells: a role in diabetic retinopathy? Invest Ophthalmol Vis Sci 51:1857–1865

    Google Scholar 

  • Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, DEL Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480

    Article  CAS  PubMed  Google Scholar 

  • Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM (1995) T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J Immunol 154:5876–5884

    Article  PubMed  Google Scholar 

  • Vos CM, Geurts JJ, Montagne L, van Haastert ES, Bo L, van der Valk P, Barkhof F, de Vries HE (2005) Blood-brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis 20:953–960

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Pan L, Moens CB, Appel B (2014) Notch3 establishes brain vascular integrity by regulating pericyte number. Development 141:307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson AN, Berthiaume AA, Faino AV, Mcdowell KP, Bhat NR, Hartmann DA, Shih AY (2020) Mild pericyte deficiency is associated with aberrant brain microvascular flow in aged PDGFRbeta(+/-) mice. J Cereb Blood Flow Metab:271678X19900543

    Google Scholar 

  • Wei HS, Kang H, Rasheed ID, Zhou S, Lou N, Gershteyn A, Mcconnell ED, Wang Y, Richardson KE, Palmer AF, Xu C, Wan J, Nedergaard M (2016) Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron 91:851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelmus MM, Otte-Holler I, van Triel JJ, Veerhuis R, Maat-Schieman ML, Bu G, de Waal RM, Verbeek MM (2007) Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 171:1989–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson-Berka JL, Babic S, de Gooyer T, Stitt AW, Jaworski K, Ong LG, Kelly DJ, Gilbert RE (2004) Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am J Pathol 164:1263–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV (2013) Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125:111–120

    Article  CAS  PubMed  Google Scholar 

  • Winkler EA, Sagare AP, Zlokovic BV (2014) The pericyte: a forgotten cell type with important implications for Alzheimer’s disease? Brain Pathol 24:371–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC (2013) The blood-brain barrier: an engineering perspective. Front Neuroeng 6:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, Tinajero CD, Yuan LJ, Zhang R (2017) Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab 37:2848–2856

    Article  PubMed  Google Scholar 

  • Yamadera M, Fujimura H, Inoue K, Toyooka K, Mori C, Hirano H, Sakoda S (2015) Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 16:393–401

    Article  PubMed  Google Scholar 

  • Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, Koo BN, Kita S, O’donnell E, Osawa T, Takahashi H, Takano KI, Dohmoto M, Sugimori M, Usui I, Watanabe Y, Hatakeyama N, Iwamoto T, Komuro I, Takatsu K, Tobe K, Niida S, Matsuda N, Shibuya M, Sasahara M (2017) A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 7:3855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki T, Mukouyama YS (2018) Tissue specific origin, development, and pathological perspectives of pericytes. Front Cardiovasc Med 5:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yates RL, Esiri MM, Palace J, Jacobs B, Perera R, Deluca GC (2017) Fibrin(ogen) and neurodegeneration in the progressive multiple sclerosis cortex. Ann Neurol 82:259–270

    Article  CAS  PubMed  Google Scholar 

  • Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T (2009) Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 15:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Youn SW, Jung KH, Chu K, Lee JY, Lee ST, Bahn JJ, Park DK, Yu JS, Kim SY, Kim M, Lee SK, Han MH, Roh JK (2015) Feasibility and safety of intra-arterial pericyte progenitor cell delivery following mannitol-induced transient blood-brain barrier opening in a canine model. Cell Transplant 24:1469–1479

    Article  PubMed  Google Scholar 

  • Zhou S, Giannetto M, Decourcey J, Kang H, Kang N, Li Y, Zheng S, Zhao H, Simmons WR, Wei HS, Bodine DM, Low PS, Nedergaard M, Wan J (2019) Oxygen tension-mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia. Sci Adv 5:eaaw4466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the assistance of Dr. Jo-Maree Courtney in figure generation and Drs Jo-Maree Courtney and Gary Morris for constructive feedback on the chapter.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

Disclosure of Interests

The author declares he has no conflict of interest.

Funding

BAS receives funding from the National Health and Medical Research Council (APP1137776, APP1163384) and the Rebecca L. Cooper Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad A. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sutherland, B.A. (2021). The Complex and Integral Roles of Pericytes Within the Neurovascular Unit in Health and Disease. In: Birbrair, A. (eds) Biology of Pericytes – Recent Advances. Stem Cell Biology and Regenerative Medicine, vol 68. Humana, Cham. https://doi.org/10.1007/978-3-030-62129-2_2

Download citation

Publish with us

Policies and ethics