Skip to main content

Energy Storage Devices (Supercapacitors and Batteries)

  • Chapter
  • First Online:
Advances in Hybrid Conducting Polymer Technology

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The realization of future energy based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges faced by modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. With the improvement of global economy, the fatigue of energy becomes inevitable in the twenty-first century. It is expected that the increase in world energy requirements will be triple at the end of this century. Thus, there is an imperative need for the development of renewable energy sources and storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, C., Wei, Y.L., Cao, P.F., Lin, M.C.: Energy storage system: current studies on batteries and power condition system Renew. Sust. Energ. Rev. 82, 3091 (2018)

    Article  Google Scholar 

  2. Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future Mater. Today 18, 252 (2015)

    Article  Google Scholar 

  3. Gunawardane, K.: Capacitors as energy storage devices—Simple basics to current commercial families. In: Energy Storage Devices for Electronic Systems, p. 137. Academic Press, Elsevier

    Google Scholar 

  4. Kularatna, N.: Capacitors as energy storage devices—simple basics to current commercial families. In: Energy Storage Devices—A General Overview, p. 1. Academic Press, Elsevier (2015)

    Google Scholar 

  5. Zuo, W., Li, R., Zhou, C., Li, Y., Xia, J., Liu, J.: Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects Adv. Sci. 4, 1600539 (2017)

    Article  Google Scholar 

  6. Ballarin B., Masiero S., Seeber R., Tonelli D.: Modification of electrodes with porphyrin-functionalised conductive polymers J. Electroanal. Chem. 449, 173 (1998)

    Google Scholar 

  7. Iqbal, S., Ahmad, S.: Recent development in hybrid conducting polymers: Synthesis, applications and future prospects J. Ind. Eng. Chem. 60, 53 (2018)

    Article  Google Scholar 

  8. Mandal, T.K., Fleming, M.S., Walt, D.R.: Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature Nano Lett. 2, 3 (2002)

    Article  Google Scholar 

  9. Corbierre, M.K., Cameron, N.S., Sutton, M., Mochrie, S.G.J., Lurio, L.B., Rühm, A., Lennox, R.B.: Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices J. Am. Chem. Soc. 123, 10411 (2001)

    Article  Google Scholar 

  10. Girtan, M.: On the stability of the electrical and photoelectrical properties of P3HT and P3HT:PCBM blends thin films Org. Electron. Phys. Mater. Appl. 14, 200 (2013)

    Google Scholar 

  11. Chen, B., Liu, C., Ge, L., Hayashi, K.: Electrical conduction and gas sensing characteristics of P3HT/Au nano-islands composite Sens. Actuators B Chem. 241, 1099 (2017)

    Article  Google Scholar 

  12. Zhang, F., Cao, H., Yue, D., Zhang, J., Qu, M.: Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for lithium ion batteries Inorg. Chem. 51, 9544 (2012)

    Article  Google Scholar 

  13. Wang, Y.G., Wu, W., Cheng, L., He, P., Wang, C.X., Xia, Y.Y.: A Polyaniline‐Intercalated Layered Manganese Oxide Nanocomposite Prepared by an Inorganic/Organic Interface Reaction and Its High Electrochemical Performance for Li Storage Adv. Mater. 20, 2166 (2008)

    Article  Google Scholar 

  14. Mai, L., Xu, X., Han, C., Luo, Y., Xu, L., Wu, Y.A., Zhao, Y.: Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property NanoLett. 11, 4992 (2011)

    Article  Google Scholar 

  15. Zhou, X.Y., Tang, J., Yang, J., Zou, Y.L., Wang, S.C., Xie, J., Ma, L.L.: Effect of polypyrrole on improving electrochemical performance of silicon based anode materials Electrochim. Acta 70, 296 (2012)

    Article  Google Scholar 

  16. Wang, G.J., Yang, L.C., Qu, Q.T., Wang, B., Wu, Y.P., Holze, R.: An aqueous rechargeable lithium battery based on doping and intercalation mechanisms J. Solid State Electrochem. 14, 865 (2010)

    Article  Google Scholar 

  17. Tang, W., Liu, L., Zhu, Y., Sun, H., Wu, Y., Zhu, K.: An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4 Energy Environ. Sci. 5, 6909 (2012)

    Article  Google Scholar 

  18. Tang, W., Gao, X.W., Zhu, Y.S., Yue, Y.B., Shi, Y., Wu, Y.P., Zhu, K.: An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2 O4 J. Mater. Chem. 22, 20143 (2012)

    Article  Google Scholar 

  19. Liu, L.L., Wang, X.J., Zhu, Y.S., Hu, C.L., Wu, Y.P., Holze, R.: A hybrid of V2 O2 nanowires and MWCNTs coated with polypyrrole as an anode material for aqueous rechargeable lithium batteries with excellent cycling performance J. Power Sources 224, 290 (2013)

    Article  Google Scholar 

  20. Tian, F., Liu, L., Yang, Z., Wang, X., Chen, Q., Wang, X.: Polypyrrole-coated LiV3 O8-nanocomposites with good electrochemical performance as anode material for aqueous rechargeable lithium batteries Mater. Chem. Phys. 127, 151 (2011)

    Article  Google Scholar 

  21. Liu, H., Zhang, F., Li, W., Zhang, X., Lee, C., Wang, W., Tang, Y.: Porous tremella-like MoS /polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes Electrochim. Acta 167, 132 (2015)

    Article  Google Scholar 

  22. Yang, L., Wang, S., Mao, J., Deng, J., Gao, Q., Tang, Y., Schmidt, O.G.: Hierarchical MoS2 /Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium‐Ion Batteries Adv. Mater. 25, 1180 (2013)

    Article  Google Scholar 

  23. Liu, J., Gu, M., Ouyang, L., Wang, H., Yang, L., Zhu, M.: Sandwich-like SnS/Polypyrrole Ultrathin Nanosheets as High-Performance Anode Materials for Li-Ion Batteries ACS Appl. Mater. Interfaces 8, 8502 (2016)

    Article  Google Scholar 

  24. Zhao, X., Mai, Y., Luo, H., Tang, D., Lee, B., Huang, C., Zhang, L.: Nano-MoS2 /poly (3,4-ethylenedioxythiophene): Poly(styrenesulfonate) composite prepared by a facial dip-coating process for Li-ion battery anode Appl. Surf. Sci. 288, 736 (2014)

    Article  Google Scholar 

  25. Xie, D., Wang, D.H., Tang, W.J., Xia, X.H., Zhang, Y.J., Wang, X.L., Gu, C.D., Tu, J.P.: Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage J. Power Sources 307, 510 (2016)

    Article  Google Scholar 

  26. Azman, N.H.N., Mamat, M.S., Ngee, L.H., Sulaiman, Y.: Graphene‐based ternary composites for supercapacitors Int. J. Energy Res. 42, 2104 (2018)

    Article  Google Scholar 

  27. Han, S., Ai, Y., Tang, Y., Jiang, J., Wu, D.: Carbonized polyaniline coupled molybdenum disulfide/graphene nanosheets for high performance lithium ion battery anodes RSC Adv. 5, 96660 (2015)

    Article  Google Scholar 

  28. Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  Google Scholar 

  29. Paek, S.M., Yoo, E., Honma, I.: Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2 /Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure Nano Lett. 9, 72 (2009)

    Article  Google Scholar 

  30. Wang, H., Yang, Y., Liang, Y., Robinson, J.T., Li, Y., Jackson, A., Cui, Y., Dai, H.: Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability Nano Lett. 11, 2644 (2011)

    Article  Google Scholar 

  31. Luo, J., Liu, J., Zeng, Z., Ng, C.F., Ma, L., Zhang, H., Lin, J., Shen, Z., Fan, H.J.: Three-Dimensional Graphene Foam Supported Fe3 O3 Lithium Battery Anodes with Long Cycle Life and High Rate Capability Nano Lett. 13, 6136 (2013)

    Article  Google Scholar 

  32. Gao, F., Qu, J.Y., Zhao, Z.B., Dong, Y.F., Yang, J., Dong, Q., Qiu, J.S.: Easy synthesis of MnO-graphene hybrids for high-performance lithium storage New Carbon Mater. 29, 316 (2014)

    Article  Google Scholar 

  33. David, L., Bhandavat, R., Singh, G.: MoS /Graphene Composite Paper for Sodium-Ion Battery Electrodes ACS Nano 8, 1759 (2014)

    Article  Google Scholar 

  34. Qu, B., Ma, C., Ji, G., Xu, C., Xu, J., Meng, Y.S., Wang, T., Lee, J.Y.: Layered SnS2-reduced graphene oxide composite--a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material Adv. Mater. 26, 3854 (2014)

    Article  Google Scholar 

  35. Yuan, F.W., Tuan, H.Y.: Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications Chem. Mater. 26, 2172 (2014)

    Article  Google Scholar 

  36. Murugan, A.V., Muraliganth, T., Manthiram, A.: Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage Chem. Mater. 21, 5004 (2009)

    Article  Google Scholar 

  37. Wang, H., Tran, D., Qian, J., Ding, F., Losic, D.: MoS2 /Graphene Composites as Promising Materials for Energy Storage and Conversion Applications Adv. Mater. Interfaces 1900915 (2019)

    Google Scholar 

  38. Li, Q., Guo, X., Zheng, M., Pang, H.: Some MoS2-based materials for sodium-ion battery Funct. Mater. Lett. 11, 1840004 (2018)

    Article  Google Scholar 

  39. Nan J., Guo X., Xiao J., Li X., Chen W., Wu W., Liu H., Wang Y., Wu M., Wang G.: Nanoengineering of 2D MXene‐Based Materials for Energy Storage Applications Small 1902085 (2019)

    Google Scholar 

  40. Ling, Z., Ren, C.E., Zhao, M.Q., Yang, J., Giammarco, J.M., Qiu, J., Barsoum, M.W., Gogotsi, Y.: Flexible and conductive MXene films and nanocomposites with high capacitance Proc. Natl. Acad. Sci. USA 111, 16676 (2014)

    Article  Google Scholar 

  41. Boota, M., Anasori, B., Voigt, C., Zhao, M.Q., Barsoum, M.W., Gogotsi, Y.: Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene) Adv. Mater. 28, 1517 (2016)

    Article  Google Scholar 

  42. Qin, L., Tao, Q., Liu, X., Fahlman, M., Halim, J., Persson, P.O., Rosen, J., Zhang, F.: Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors Nano Energy 60, 734 (2019)

    Article  Google Scholar 

  43. Zhu, M., Huang, Y., Deng, Q., Zhou, J., Pei, Z., Xue, Q., Huang, Y., Wang, Z., Li, H., Huang, Q., Zhi, C.: Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene Adv. Energy Mater. 6, 1600969 (2016)

    Article  Google Scholar 

  44. Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Kluwer-Plenum, New York (1999)

    Book  Google Scholar 

  45. Winter, M., Brodd, R.J.: What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 104, 4245 (2004)

    Article  Google Scholar 

  46. Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., Chen, Y.: Supercapacitor Devices Based on Graphene Materials J. Phys. Chem. C 113, 13103 (2009)

    Article  Google Scholar 

  47. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes Chem. Soc. Rev. 38, 2520 (2009)

    Article  Google Scholar 

  48. Wu, Z., Li, L., Yan, J., Zhang, X.: Materials Design and System Construction for Conventional and New‐Concept Supercapacitors Adv. Sci. 4(6), 1600382 (2017)

    Article  Google Scholar 

  49. Zhang J., Zhang L., Sun X., Liu H., Sun A., Liu R.S., Zhang, J.: Electrochemical Technologies for Energy Storage and Conversion, 1st edn. Wiley (2012)

    Google Scholar 

  50. Simon, P., Gogotsi, Y.: Materials for electrochemical capacitors Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  51. Helmholtz, H.V.: Some laws concerning the distribution of electrical currents in conductors Ann. Phys. (Leipzig) 89, 21 (1853)

    Google Scholar 

  52. Gouy, G.: Constitution of the Electric Charge at the Surface of an Electrolyte J. Phys. 4, 457 (1910)

    MATH  Google Scholar 

  53. Chapman, D.L.: A contribution to the theory of electrocapillarity Philos. Mag. 6, 475 (1913)

    Article  MATH  Google Scholar 

  54. Stern, O.: The theory of the electrolytic double shiftThe theory of the electrolytic double shift Z. Electrochem. 30, 508 (1924)

    Google Scholar 

  55. Lota, K., Khomenko, V., Frackowiak, E.: Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites J. Phys. Chem. Solids 65, 295 (2004)

    Article  Google Scholar 

  56. Chen, L.M., Lai, Q.Y., Hao, Y.J., Huang, J.H., Ji, X.Y.: Pseudo-capacitive properties of LiCoO2/AC electrochemical capacitor in various aqueous electrolytes Ionics 14, 441 (2010)

    Article  Google Scholar 

  57. Tang, C., Liu, Y., Yang, D., Yang, M., Li, H.: Oxygen and nitrogen co-doped porous carbons with finely-layered schistose structure for high-rate-performance supercapacitors Carbon 122, 538 (2017)

    Article  Google Scholar 

  58. Niu, C., Sichel, E.K., Hoch, R., Moy, D., Tennent, H.: High power electrochemical capacitors based on carbon nanotube electrodes Appl. Phys. Lett. 70, 1480 (1997)

    Article  Google Scholar 

  59. Zeng, Q., Tian, H., Jiang, J., Ji, X., Gao, D., Wang, C.: High-purity helical carbon nanotubes with enhanced electrochemical properties for supercapacitors RSC Adv. 7, 7375 (2017)

    Article  Google Scholar 

  60. González, A., Goikole, E., Barrena, J.A., Mysyk, R.: Review on supercapacitors: Technologies and materials Renew. Sust. Energ. Rev. 58, 1189 (2016)

    Article  Google Scholar 

  61. Zhang Y., Sun X., Pan L., Li H., Sun Z., Sun C., Tay B.K.: Carbon nanotube–zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors J. Alloys Compd. 480, L17 (2009)

    Google Scholar 

  62. Hu, Z.A., Xie, Y.L., Wang, Y.X., Mo, L.P., Yang, Y.Y., Zhang, Z.Y.: Polyaniline/SnO nanocomposite for supercapacitor applications Mater. Chem. Phys. 114, 990 (2009)

    Article  Google Scholar 

  63. Yan, Y., Wang, T., Li, X., Pang, H., Xue, H.: Noble metal-based materials in high-performance supercapacitors Inorg. Chem. Front. 4, 33 (2017)

    Article  Google Scholar 

  64. Du, B., Jiang, Q., Zhao, X.F., Huang, B., Zhao, Y.: Preparation of PPy/CNT Composite Applications for Supercapacitor Electrode Material Mater. Sci. Forum 610–613, 502 (2009)

    Article  Google Scholar 

  65. Zhang, X., Yang, W., Ma, Y.: Synthesis of Polypyrrole-Intercalated Layered Manganese Oxide Nanocomposite by a Delamination⁄Reassembling Method and Its Electrochemical Capacitance Performance Electrochem. Solid St. 12, A95 (2009)

    Article  Google Scholar 

  66. Huang, L.M., Wen, T.C., Gopalan, A.: Electrochemical and spectroelectrochemical monitoring of supercapacitance and electrochromic properties of hydrous ruthenium oxide embedded poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid) composite Electrochim. Acta 51, 3469 (2006)

    Article  Google Scholar 

  67. Xu, C., Puente-Santiago, A.R., Padron, D.R., Caballero, A., Balu, A.M., Romero, A.A., Muñoz-Batista, M.J., Luque, R.: Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability ACS Appl. Energy Mater. 2(3), 2161 (2019)

    Article  Google Scholar 

  68. Lee, H.U., Yin, J.L., Park, S.W., Park, J.Y.: Preparation and characterization of PEDOT:PSS wrapped carbon nanotubes/MnO2 composite electrodes for flexible supercapacitors Synth. Met. 228, 84 (2017)

    Article  Google Scholar 

  69. Xia, H., Wang, Y., Lin, J., Lu, L.: Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors Nanoscale Res. Lett. 7, 33 (2012)

    Article  Google Scholar 

  70. Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N., Qin, L.C.: Graphene and nanostructured MnO2 composite electrodes for supercapacitors Carbon 49, 2917 (2011)

    Article  Google Scholar 

  71. Amatucci, G.G., Badway, F., Pasquier, A.D., Zheng, T.: An Asymmetric Hybrid Nonaqueous Energy Storage Cell J. Electrochem. Soc. 148, A930 (2001)

    Article  Google Scholar 

  72. Zhang, S., Li, C., Zhang, X., Sun, X., Wang, K., Ma, Y.: High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4–Graphene Composite Anode and Activated Carbon Cathode ACS Appl. Mater. Interfaces 20, 17136 (2017)

    Article  Google Scholar 

  73. Hu, X., Deng, Z., Suo, J., Pan, Z.: A high rate, high capacity and long life (LiMn2O4 + AC)/Li4 Ti5O12 hybrid battery–supercapacitor J. Power Sources 187, 635 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenakshi Gusain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gusain, M., Singh, P., Zhan, Y. (2021). Energy Storage Devices (Supercapacitors and Batteries). In: Shahabuddin, S., Pandey, A.K., Khalid, M., Jagadish, P. (eds) Advances in Hybrid Conducting Polymer Technology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-62090-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62090-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62089-9

  • Online ISBN: 978-3-030-62090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics