Skip to main content

A Survey on Markov’s Theorem on Zeros of Orthogonal Polynomials

  • Chapter
  • First Online:
Nonlinear Analysis and Global Optimization

Abstract

This manuscript is an extended version of the paper by the same authors who appeared in Castillo et al. (Appl Math Comput 339:390–397, 2018). It briefly surveys a Markov’s result dating back to the end of the nineteenth century, which is related to zeros of orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Dirac measure δ y is a positive Radon measure whose support is the set {y}.

  2. 2.

    In the case that ω(x, t) is an even function in an interval of the form (−a, a), it is well known that the zeros of the orthogonal polynomials are symmetric with respect to the origin, i.e., x k(t) = −x nk+1(t), k = 1,  2, …, n.

  3. 3.

    \(A^{c}:=\{x\in \mathbb {R}\,|\,x\not \in A\)} and Co(A) denotes the convex hull of A.

  4. 4.

    Because of the symmetry of the zeros of \(P_{n}^{(\lambda )}(x)\), its negative zeros are increasing functions of λ, for λ > −1∕2.

  5. 5.

    One has the identity \(\displaystyle \frac {\Gamma '(z)}{\Gamma (z)}=-\gamma -\frac {1}{z}-\sum _{n=1}^{\infty }\left [\frac {1}{z+n}-\frac {1}{n} \right ]\), where γ is the Euler constant (see [34, Section 12.3], [31, Chapter 7]).

References

  1. S. Ahmed, M.E. Muldoon, R. Spigler, Inequalities and numerical bound for zeros of ultraspherical polynomials. SIAM J. Math. Anal. 17, 1000–1007 (1986)

    Article  MathSciNet  Google Scholar 

  2. I. Area, D.K. Dimitrov, E. Godoy, V. Paschoa, Zeros of classical orthogonal polynomials of a discrete variable. Math. Comput. 82, 1069–1095 (2013)

    Article  MathSciNet  Google Scholar 

  3. K. Castillo, F.R. Rafaeli, On the discrete extension of Markov’s theorem on monotonicity of zeros. Electron. Trans. Numer. Anal. 44, 271–280 (2015)

    MathSciNet  MATH  Google Scholar 

  4. K. Castillo, M.S. Costa, F.R. Rafaeli, On zeros of polynomials in best L p-approximation and inserting mass points (2017). arXiv:1706.06295

    Google Scholar 

  5. K. Castillo, M.S. Costa, F.R. Rafaeli, On Markov’s theorem on zeros of orthogonal polynomials revisited. Appl. Math. Comput. 339, 390–397 (2018)

    MathSciNet  MATH  Google Scholar 

  6. T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978)

    MATH  Google Scholar 

  7. D.K. Dimitrov, On a conjecture concerning monotonicity of zeros of ultraspherical polynomials. J. Approx. Theory 85, 88–97 (1996)

    Article  MathSciNet  Google Scholar 

  8. D.K. Dimitrov, Monotonicity of zeros of polynomials orthogonal with respect to a discrete measure (2015). arXiv:1501.07235

    Google Scholar 

  9. D.K. Dimitrov, F.R. Rafaeli, Monotonicity of zeros of Jacobi polynomials. J. Approx. Theory 149, 15–29 (2007)

    Article  MathSciNet  Google Scholar 

  10. D.K. Dimitrov, F.R. Rafaeli, Monotonicity of zeros of Laguerre polynomials. J. Comput. Appl. Math. 233, 699–702 (2009)

    Article  MathSciNet  Google Scholar 

  11. A. Elbert, P.D. Siafarikas, Monotonicity properties of the zeros of ultraspherical polynomials. J. Approx. Theory 97, 31–39 (1999)

    Article  MathSciNet  Google Scholar 

  12. G. Freud, Orthogonal Polynomials (Pergamon Press, Oxford, 1971)

    MATH  Google Scholar 

  13. E.J. Huertas, F. Marcellán, F.R. Rafaeli, Zeros of orthogonal polynomials generated by canonical perturbations of measures. Appl. Math. Comput. 218, 7109–7127 (2012)

    MathSciNet  MATH  Google Scholar 

  14. E.K. Ifantis, P.D. Siafarikas, Differential inequalities and monotonicity properties of the zeros of associated Laguerre and Hermite polynomials. Ann. Numer. Math. 2, 1–4, 79–91 (1995)

    MathSciNet  MATH  Google Scholar 

  15. M.E.H. Ismail, Monotonicity of zeros of orthogonal polynomials. q-Series and Partitions, ed. by D. Stanton (Springer, New York, 1989), pp. 177–190

    Google Scholar 

  16. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications, vol. 98 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  17. M.E.H. Ismail, J. Letessier, Monotonicity of zeros of ultraspherical polynomials, in Orthogonal Polynomials and Their Applications, ed. by M. Alfaro, J.S. Dehesa, F.J. Marcellán, J.L. Rubio de Francia, J. Vinuesa. Lecture Notes in Mathematics, vol. 1329 (Springer, Berlin, 1988), pp. 329–330

    Google Scholar 

  18. K. Jordaan, H. Wang, J. Zhou, Monotonicity of zeros of polynomials orthogonal with respect to an even weight function. Integral Transform. Spec. Funct. 25(9), 721–729 (2014)

    Article  MathSciNet  Google Scholar 

  19. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics (Springer, Berlin, 2010)

    Google Scholar 

  20. T.H. Koornwinder, Orthogonal polynomials with weight function (1 − x)α(1 + x)β + Mδ(x + 1) + Nδ(x − 1). Canad. Math. Bull. 27, 205–214 (1984)

    Article  MathSciNet  Google Scholar 

  21. A.M. Krall, Orthogonal polynomials satisfying fourth order differential equations. Proc. Roy. Soc. Edinb. Sec. A. 87, 271–288 (1980/1981)

    Article  MathSciNet  Google Scholar 

  22. H.L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation. Pa. State Coll. Stud. 6, 24 (1940)

    MathSciNet  MATH  Google Scholar 

  23. A. Kroó, F. Peherstorfer, On the zeros of polynomials of minimal L p-norm. Proc. Amer. Math. Soc. 101, 652–656 (1987)

    Article  MathSciNet  Google Scholar 

  24. A. Laforgia, A monotonic property for the zeros of ultraspherical polynomials. Proc. Amer. Math. Soc. 83, 757–758 (1981)

    Article  MathSciNet  Google Scholar 

  25. A. Laforgia, Monotonicity properties for the zeros of orthogonal polynomials and Bessel function, in Polynômes Orthogonaux et Applications, ed. by C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, A. Ronveaux. Lecture Notes in Mathematics, vol. 1171 (Springer, Berlin, 1985), pp. 267–277

    Google Scholar 

  26. F. Marcellán, P. Maroni, Sur l’adjonction d’une masse de Dirac à une forme régulière et semi-classique. Ann. Mat. Pura Appl. 162(4), 1–22 (1992)

    Article  MathSciNet  Google Scholar 

  27. A. Markov, Sur les racines de certaines équations (second note). Math. Ann. 27, 177–182 (1886)

    Article  MathSciNet  Google Scholar 

  28. P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in Orthogonal Polynomials and Their Applications, ed. by C. Brezinski, L. Gori, A. Ronveaux. Annals Comput. Appl. Math. vol. 9 (Baltzer, Basel, 1991), pp. 95–130

    Google Scholar 

  29. P. Natalini, B. Palumbo, Some monotonicity results on the zeros of the generalized Laguerre polynomials. J. Comput. Appl. Math. 153, 355–360 (2003)

    Article  MathSciNet  Google Scholar 

  30. A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, Berlin, 1991)

    Book  Google Scholar 

  31. E.D. Rainville, Special Functions (Chelsea, Bronx, 1971)

    Google Scholar 

  32. T.J. Stieltjes, Sur les racines de l’équation X n = 0. Acta Math. 9, 385–400 (1887)

    Article  MathSciNet  Google Scholar 

  33. G. Szegő, Orthogonal Polynomials. Amer. Math. Soc. Coll. Publ., vol. 23, 4th edn. (American Mathematical Society, Providence, 1975)

    Google Scholar 

  34. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1927)

    MATH  Google Scholar 

Download references

Acknowledgments

Castillo is supported by the Center for Mathematics of the University of Coimbra, Grant No. UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. Rafaeli is supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) Demanda Universal under Grant No. APQ-03782-18 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Rodrigo Rafaeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castillo, K., Costa, M.d.S., Rafaeli, F.R. (2021). A Survey on Markov’s Theorem on Zeros of Orthogonal Polynomials. In: Rassias, T.M., Pardalos, P.M. (eds) Nonlinear Analysis and Global Optimization. Springer Optimization and Its Applications, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-030-61732-5_2

Download citation

Publish with us

Policies and ethics