Skip to main content

Immunology and Nanotechnology: Effects and Affects

  • Chapter
  • First Online:
Nanotechnology in Medicine

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 676 Accesses

Abstract

A usual functioning immune system tackles the overall immune modalities and verges any anomalies in the system thus conferring cumulative protection from a number of epidemics, infectious and parasitic disorders. Occasionally, the immune system is inept to balance the anomalies that might be due to certain genetic mutations, unrecognized surface proteins corona formation on the immune cells, biochemical alterations around the normally functioning cells, etc. Coalescing immune therapy and nanotechnology together could possibly curb these challenges and hence recognised as innovative approach. Progression in the field of nanotechnology has led to the usage of different adjuvants, nanocarriers, micelles, vehicles to intensify the efficacy of vaccination. Nanomaterials have been tailored to be highly competent in sustained and targeted immune deliverables and modulators by offering dominance to a number of biological, medicinal, therapeutic, prophylactic and industrial applications. With the advent of nano-vaccines, immune based therapeutics can now be mediated and modulated by nanotechnological systems such as nanoparticles, polymeric micelles, liposomes, nanotubes, nanoemulsions, immunocomplexes, etc. due to their immune-compatible and favourable physicochemical properties. This chapter enumerates how these nanomaterial properties could influence their appropriateness to a diverse number of immunological applications and also discusses the probable immunomodulatory effects that these nanosized materials may have.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA (2011) Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine 29:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Barr IG, Mitchell GF (1996) ISCOMs (immunostimulating complexes): the first decade. Immunol Cell Biol 74(1):8–25

    Article  CAS  PubMed  Google Scholar 

  • Beckett CG, Tjaden J, Burgess T, Danko JR, Tamminga C, Simmons M, Wu SJ, Sun P, Kochel T, Raviprakash K, Hayes CG (2011) Evaluation of a prototype dengue-1 DNA vaccine in a phase 1 clinical trial. Vaccine 29:960–968

    Article  CAS  PubMed  Google Scholar 

  • Bharali DJ, Pradhan V, Elkin G, Qi W, Hutson A, Mousa SA, Thanavala Y (2008) Novel nanoparticles for the delivery of recombinant hepatitis B vaccine. Nanomedicine 4:311–317

    Article  CAS  PubMed  Google Scholar 

  • Bielinska AU, Makidon PE, Janczak KW, Blanco LP, Swanson B, Smith DM, Pham T, Szabo Z, Kukowska-Latallo JF, Baker JR (2014) Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant. J Immunol 192:2722–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielinska AU, O’Konek JJ, Janczak KW, Baker JR Jr (2016) Immunomodulation of Th2 biased immunity with mucosal administration of nanoemulsion adjuvant. Vaccine 34:4017–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boato F, Thomas RM, Ghasparian A, Freund-Renard A, Moehle K, Robinson JA (2007) Synthetic virus-like particles from self-assembling coiled-coil lipopeptides and their use in antigen display to the immune system. Angew Chem Int Ed Engl 46:9015–9018

    Article  CAS  PubMed  Google Scholar 

  • Calabro S, Tortoli M, Baunder BC, Pacitto A, Cortese M, OHagan DT, De Gregorio E, Seubert A, Wack A (2011) Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29:1812–1823

    Article  CAS  PubMed  Google Scholar 

  • Chadwick S, Kriegel C, Amiji M (2010) Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 62:394–407

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain P, Mire-Sluis AR (2003) An overview of scientific and regulatory issues for the immunogenicity of biological products. Dev Biol 112:3–12

    CAS  Google Scholar 

  • Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF (1998) Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A 95:10809–10813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou HY, Lin XZ, Pan WY, Wu PY, Chang CM, Lin TY, Shen HH, Tao MH (2010) Hydrogel-delivered GM-CSF overcomes non-responsiveness to hepatitis B vaccine through the recruitment and activation of dendritic cells. J Immunol 185:5468–5475

    Article  CAS  PubMed  Google Scholar 

  • Cibulski SP, Mourglia Ettlin G, Teixeira TF, Quirici L, Roehe PM, Ferreira F, Silveira F (2016) Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine 34:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Cioncada R, Maddaluno M, Vo HTM, Woodruff M, Tavarini S, Sammicheli C, Tortoli M, Pezzicoli A, De Gregorio E, Carroll MC, D’Oro U (2017) Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells. PLoS One 12:e0185843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corthésy B, Bioley G (2018) Lipid-based particles: versatile delivery systems for mucosal vaccination against infection. Front Immunol 9:431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui Z, Han SJ, Vangasseri DP, Huang L (2005) Immunostimulation mechanism of LPD nanoparticle as a vaccine carrier. Mol Pharm 2:2–28

    Article  CAS  Google Scholar 

  • Dacoba TG, Olivera A, Torres D, Crecente-Campo J, Alonso MJ (2017) Modulating the immune system through nanotechnology. In: Seminars in immunology, vol 34. Academic Press, New York, pp 78–102

    Google Scholar 

  • Davis MM, Brodin P (2018) Rebooting human immunology. Annu Rev Immunol 36:843–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dianzani C, Cavalli R, Zara GP, Gallicchio M, Lombardi G, Gasco MR, Panzanelli P, Fantozzi R (2006) Cholesteryl butyrate solid lipid nanoparticles inhibit adhesion of human neutrophils to endothelial cells. Br J Pharmacol 148:648–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domnich A, Arata L, Amicizia D, Puig Barberà J, Gasparini R, Panatto D (2017) Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: a systematic review and meta-analysis. Vaccine 35:513–520

    Article  CAS  PubMed  Google Scholar 

  • Dykman LA, Sumaroka MV, Staroverov SA, Zaitseva IS, Bogatyrev VA (2004) Immunogenic properties of colloidal gold. Biol Bull Russ Acad Sci 31:75–79

    Article  CAS  Google Scholar 

  • Ertl HC (2019) New rabies vaccines for use in humans. Vaccine 7:54

    Article  CAS  Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154

    Article  CAS  PubMed  Google Scholar 

  • Ghasparian A, Riedel T, Koomullil J, Moehle K, Gorba C, Svergun DI, Perriman AW, Mann S, Tamborrini M, Pluschke G, Robinson JA (2011) Engineered synthetic virus-like particles and their use in vaccine delivery. Chembiochem 12:100–109

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS (2015) Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161:201–204

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes-Walker A, Mackie N, McCormack S, Hanke T, Schmidt C, Gilmour J, Barin B, McMichael A, Weber J, Legg K, Babiker A (2008) Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr. HIVA DNA and MVA. HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine 26:6671–6677

    Article  CAS  PubMed  Google Scholar 

  • Haber M, Longini IM Jr, Halloran ME (1991) Measures of the effects of vaccination in a randomly mixing population. Int J Epidemiol 20:300–310

    Article  CAS  PubMed  Google Scholar 

  • Halloran ME, Longini IM, Struchiner CJ, Longini IM (2010) Design and analysis of vaccine studies. Springer, New York

    Book  Google Scholar 

  • Harandi AM, Lycke N (2017) Toxin-based mucosal adjuvants. In: Immunopotentiators in modern vaccines, vol 1. Academic Press, New York, pp 377–397

    Chapter  Google Scholar 

  • Hattori Y (2016) Delivery of plasmid DNA into tumors by intravenous injection of PEGylated cationic lipoplexes into tumor-bearing mice. Pharmacol Pharm 7:272–282

    Article  CAS  Google Scholar 

  • Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 32:926–932

    Article  CAS  PubMed  Google Scholar 

  • Helgeby A, Robson NC, Donachie AM, Beackock Sharp H, Lövgren K, Schön K, Mowat A, Lycke NY (2006) The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J Immunol 176:3697–3706

    Article  CAS  PubMed  Google Scholar 

  • Henriksen Lacey M, Christensen D, Bramwell VW, Lindenstrom T, Egger EM, Andersen P, Perrie Y (2010) Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release 145:102–108

    Article  CAS  PubMed  Google Scholar 

  • Hu KF, Lövgren Bengtsson K, Morein B (2001) Immunostimulating complexes (ISCOMs) for nasal vaccination. Adv Drug Deliv Rev 51:149–159

    Article  CAS  PubMed  Google Scholar 

  • Jones SA (2005) Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 175:3463–3468

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Bawage S, Tiwari P, Kirby D, Perrie Y, Dennis V, Singh SR (2019) Liposomes: a promising carrier for respiratory syncytial virus therapeutics. Expert Opin Drug Deliv 16:969–980

    Article  CAS  PubMed  Google Scholar 

  • Kaba SA, McCoy ME, Doll TA, Brando C, Guo Q, Dasgupta D, Yang Y, Mittelholzer C, Spaccapelo R, Crisanti A, Burkhard P (2012) Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine. PLoS One 7:e48304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaurav M, Madan J, Sudheesh MS, Pandey RS (2018) Combined adjuvant-delivery system for new generation vaccine antigens: alliance has its own advantage. Artif Cells Nanomed Biotechnol 46:S818–S831

    Article  CAS  PubMed  Google Scholar 

  • Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK (2014) Nanotechnology and vaccine development. Asian J Pharm Sci 9:227–235

    Article  Google Scholar 

  • Kim Y, Park EJ, Na DH (2018) Recent progress in dendrimer-based nanomedicine development. Arch Pharm Res 41:571–582

    Article  CAS  PubMed  Google Scholar 

  • Kumar CS, Ashok R, Prabu SL, Ruckmani K (2017) Evaluation of betamethasone sodium phosphate loaded chitosan nanoparticles for anti-rheumatoid activity. IET Nanobiotechnol 12:6–11

    Article  Google Scholar 

  • Li J, Helal Z, Ladman B, Karch C, Gelb J (2018) Nanoparticle vaccine for avian influenza virus: a challenge study against highly pathogenic H5N2 subtype. J Virol Antivir Res 7:1–2

    Article  Google Scholar 

  • Lin YJ, Wen CN, Lin YY, Hsieh WC, Chang CC, Chen YH, Hsu CH, Shih YJ, Chen CH, Fang CT (2020) Oil-in-water emulsion adjuvants for pediatric influenza vaccines: a systematic review and meta-analysis. Nat Commun 11:1–12

    CAS  Google Scholar 

  • Look M, Bandyopadhyay A, Blum JS, Fahmy TM (2010) Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 62:378–393

    Article  CAS  PubMed  Google Scholar 

  • Makidon PE, Belyakov IM, Blanco LP, Janczak KW, Landers J, Bielinska AU, Groom JV, Baker JR (2012) Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking. Eur J Immunol 42:2073–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:404–1413

    Google Scholar 

  • Marasini N, Ghaffar KA, Skwarczynski M, Toth I (2017) Liposomes as a vaccine delivery system. Micro Nanotechnol Vaccine Dev 1:221–239

    Article  Google Scholar 

  • Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, Andrews CA, Vogel L, Koup RA, Roederer M, Bailer RT (2008) A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial. Vaccine 26:6338–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Sernandez V, Figueiras A (2013) Central nervous system demyelinating diseases and recombinant hepatitis B vaccination: a critical systematic review of scientific production. J Neurol 260:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Mascola JR, Montefiori DC (2010) The role of antibodies in HIV vaccines. Annu Rev Immunol 28:413–444

    Article  CAS  PubMed  Google Scholar 

  • McBurney SP, Ross TM (2009) Human immunodeficiency virus-like particles with consensus envelopes elicited broader cell-mediated peripheral and mucosal immune responses than polyvalent and monovalent Env vaccines. Vaccine 27:4337–4349

    Article  CAS  PubMed  Google Scholar 

  • McEntee C, Lavelle EC, O’Hagan DT (2015) Antigen delivery systems I: Nonliving microparticles, liposomes, and immune-stimulating complexes (ISCOMs). Mucosal Immunol 1:1211–1123

    Article  CAS  Google Scholar 

  • Mitsui C, Kajiwara K, Hayashi H, Ito J, Mita H, Ono E, Higashi N, Fukutomi Y, Sekiya K, Tsuburai T, Akiyama K (2016) Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 137:400–411

    Article  CAS  PubMed  Google Scholar 

  • Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed AR, Bramwell VW, Kirby DJ, McNeil SE, Perrie Y (2010) Increased potential of a cationic liposome-based delivery system: enhancing stability and sustained immunological activity in pre-clinical development. Eur J Pharm Biopharm 76:404–412

    Article  CAS  PubMed  Google Scholar 

  • Morcol T, Nagappan P, Bell SJ, Cawthon AG (2019) Influenza A (H5N1) virus subunit vaccine administered with CaPNP adjuvant induce high virus neutralization antibody titers in mice. AAPS PharmSciTech 20:315

    Article  PubMed  CAS  Google Scholar 

  • Morein B, Sharp M, Sundquist B, Simons K (1983) Protein subunit vaccines of parainfluenza type 3 virus: immunogenic effect in lambs and mice. J Gen Virol 64:1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Morelli AB, Maraskovsky E (2017) ISCOMATRIX adjuvant in the development of prophylactic and therapeutic vaccines. In: Immunopotentiators in modern vaccines, vol 1, Academic, New York, pp 311–332

    Google Scholar 

  • Mowat AM, Smith RE, Donachie AM, Furrie E, Grdic D, Lycke N (1999) Oral vaccination with immune stimulating complexes. Immunol Lett 65:133–140

    Article  CAS  PubMed  Google Scholar 

  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release 125:93–209

    Article  CAS  Google Scholar 

  • Myc A, Kukowska Latallo JF, Smith DM, Passmore C, Pham T, Wong P, Bielinska AU, Baker JR (2013) Nanoemulsion nasal adjuvant W805EC induces dendritic cell engulfment of antigen-primed epithelial cells. Vaccine 31:1072–1079

    Article  CAS  PubMed  Google Scholar 

  • Nahle S, Cassidy H, Leroux MM, Mercier R, Ghanbaja J, Doumandji Z, Matallanas D, Rihn BH, Joubert O, Ferrari L (2020) Genes expression profiling of alveolar macrophages exposed to non-functionalized, anionic and cationic multi-walled carbon nanotubes shows three different mechanisms of toxicity. J Nanobiotechnol 18:1–18

    Article  CAS  Google Scholar 

  • Negahdaripour M, Golkar N, Hajighahramani N, Kianpour S, Nezafat N, Ghasemi Y (2017) Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol Adv 35:575–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • No JH, Kim MK, Jeon YT, Kim YB, Song YS (2011) Human papillomavirus vaccine: widening the scope for cancer prevention. Mol Carcinog 50:244–253

    Article  CAS  PubMed  Google Scholar 

  • Patel SS, Bizjajeva S, Heijnen E, Oberye J (2019) MF59-adjuvanted seasonal trivalent inactivated influenza vaccine: safety and immunogenicity in young children at risk of influenza complications. Int J Infect Dis 85:S18–S25

    Article  CAS  Google Scholar 

  • Pham HL, Ross BP, McGeary RP, Shaw PN, Davies NM (2009) Synthesis of cationic derivatives of Quil A and the preparation of cationic immune-stimulating complexes (ISCOMs). Int J Pharm 376:123–133

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran M, Madhan S, Prabhu N, Geng GY, New R, Kwang J (2010) Reverse micelle-encapsulated recombinant baculovirus as an oral vaccine against H5N1 infection in mice. Antivir Res 86:180–187

    Article  CAS  PubMed  Google Scholar 

  • Raman S, Machaidze G, Lustig A, Aebi U, Burkhard P (2006) Structure-based design of peptides that self-assemble into regular polyhedral nanoparticles. Nanomedicine 2:95–102

    Article  CAS  PubMed  Google Scholar 

  • Reddy ST, Van Der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, Hubbell JA (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25:1159–1164

    Article  CAS  PubMed  Google Scholar 

  • Rhee JH (2020) Current and new approaches for mucosal vaccine delivery. Mucosal Vaccines 2020:325–356

    Article  Google Scholar 

  • Riedel T, Ghasparian A, Moehle K, Rusert P, Trkola A, Robinson JA (2011) Synthetic virus-like particles and conformationally constrained peptidomimetics in vaccine design. Chembiochem 12:2829–2836

    Article  CAS  PubMed  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburstâ„¢ dendrimers. J Biomed Mater Res 30:53–65

    Article  CAS  PubMed  Google Scholar 

  • Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK (2012) HIV-1 vaccine trials: evolving concepts and designs. Open AIDS J 6:274–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Saravanan M, Asmalash T, Gebrekidan A, Gebreegziabiher D, Araya T, Hilekiros H, Barabadi H, Ramanathan K (2018) Nano-medicine as a newly emerging approach to combat human immunodeficiency virus (HIV). Pharm Nanotechnol 6:17–27

    Article  CAS  PubMed  Google Scholar 

  • Schirmbeck R, Bohm W, Reimann J (1996) Virus-like particles induce MHC class I-restricted T-cell responses. Lessons learned from the hepatitis B small surface antigen. Intervirology 39:111–119

    Article  CAS  PubMed  Google Scholar 

  • Schultze V, DAgosto V, Wack A, Novicki D, Zorn J, Hennig R (2008) Safety of MF59â„¢ adjuvant. Vaccine 26:3209–3222

    Article  CAS  PubMed  Google Scholar 

  • Seth L, Ferlez KMB, Kaba SA, Musser DM, Emadi S, Matyas GR, Beck Z, Alving CR, Burkhard P, Lanar DE (2017) Development of a self-assembling protein nanoparticle vaccine targeting Plasmodium falciparum Circumsporozoite Protein delivered in three Army Liposome Formulation adjuvants. Vaccine 35:5448–5454

    Article  CAS  PubMed  Google Scholar 

  • Shah RR, O’Hagan DT, Amiji MM, Brito LA (2014) The impact of size on particulate vaccine adjuvant. Nanomedicine 9:2671–2681

    Article  CAS  PubMed  Google Scholar 

  • Shah RR, Taccone M, Monaci E, Brito LA, Bonci A, O’Hagan DT, Amiji MM, Seubert A (2019) The droplet size of emulsion adjuvants has significant impact on their potency, due to differences in immune cell-recruitment and-activation. Sci Rep 9:1–9

    Article  CAS  Google Scholar 

  • Skwarczynski M, Toth I (2016) Peptide-based synthetic vaccines. Chem Sci 7:842–854

    Article  CAS  PubMed  Google Scholar 

  • Stanberry LR, Simon JK, Johnson C, Robinson PL, Morry J, Flack MR, Gracon S, Myc A, Hamouda T, Baker JR (2012) Safety and immunogenicity of a novel nanoemulsion mucosal adjuvant W805EC combined with approved seasonal influenza antigens. Vaccine 30:307–316

    Article  CAS  PubMed  Google Scholar 

  • Sun HX, Xie Y, Ye YP (2009) ISCOMs and ISCOMATRIXâ„¢. Vaccine 27:4388–4401

    Article  CAS  PubMed  Google Scholar 

  • Tandrup Schmidt S, Foged C, Smith Korsholm K, Rades T, Christensen D (2016) Liposome-based adjuvants for subunit vaccines: formulation strategies for subunit antigens and immunostimulators. Pharmaceutics 8:7

    Article  PubMed Central  CAS  Google Scholar 

  • Tayeb HH, Sainsbury F (2018) Nanoemulsions in drug delivery: formulation to medical application. Nanomedicine 13:2507–2525

    Article  CAS  PubMed  Google Scholar 

  • Witztum JL, Lichtman AH (2014) The influence of innate and adaptive immune responses on atherosclerosis. Annu Rev Pathol 9:73–102

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Mai Y, Zhao Y, Hou Y, Liu Y, Yang J (2019) Targeting strategies of liposomal subunit vaccine delivery systems to improve vaccine efficacy. J Drug Target 27:780–789

    Article  CAS  PubMed  Google Scholar 

  • Zahednezhad F, Saadat M, Valizadeh H, Zakeri Milani P, Baradaran B (2019) Liposome and immune system interplay: challenges and potentials. J Control Release 305:194–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Vellore Institute of Technology, Vellore and University of Miyazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harishkumar Madhyastha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, K., Madhyastha, H. (2021). Immunology and Nanotechnology: Effects and Affects. In: Arivarasan, V.K., Loganathan, K., Janarthanan, P. (eds) Nanotechnology in Medicine. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-61021-0_2

Download citation

Publish with us

Policies and ethics