Skip to main content

Human Performance Operating Picture for Shepherding a Swarm of Autonomous Vehicles

  • Chapter
  • First Online:
Shepherding UxVs for Human-Swarm Teaming

Abstract

Due to many factors that range from ethical considerations and accountability to technological imperfection in autonomous systems, humans will continue to be an integral part of any meaningful autonomous system. While shepherding offers a technological concept that allows a human to operate a significantly larger number of autonomous systems that a human can handle in today’s environment, it is important to realise that a significant amount of accidents today are due to human error. The scalability promise that shepherding offers comes with possible challenges including those arising from the cognitive load imposed on human operators and the need to smoothly integrate the human, as a biological autonomous system, with the wider multi-agent autonomous system of future operating environments. In this chapter, we bring together the dimensions of this complex problem. We present carefully selected factors to cover human performance, especially for cognitively demanding tasks and situation awareness, and how these factors contribute to trust in the system. We then present the Human Factors Operating Picture (H-FOP), which offers a real-time situation awareness picture on human performance in this complex environment. We conclude with the concept of operation for integrating H-FOP with the human-swarm teaming problem, with a focus on the reliance of shepherding as the swarm guidance and control method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbass, H.A., Tang, J., Amin, R., Ellejmi, M., Kirby, S.: Augmented cognition using real-time EEG-based adaptive strategies for air traffic control. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 58, pp. 230–234. SAGE Publications Sage CA, Los Angeles (2014)

    Google Scholar 

  2. Abbass, H.A., Petraki, E., Merrick, K., Harvey, J., Barlow, M.: Trusted autonomy and cognitive cyber symbiosis: open challenges. Cognit. Comput. 8(3), 385–408 (2016). https://doi.org/10.1007/s12559-015-9365-5

    Article  Google Scholar 

  3. Bindewald, J.M., Rusnock, C.F., Miller, M.E.: Measuring human trust behavior in human-machine teams. In: International Conference on Applied Human Factors and Ergonomics, pp. 47–58. Springer, Berlin (2017)

    Google Scholar 

  4. Blais, C., Ellis, D.M., Wingert, K.M., Cohen, A.B., Brewer, G.A.: Alpha suppression over parietal electrode sites predicts decisions to trust. Soc. Neurosci. 14(2), 226–235 (2019)

    Article  Google Scholar 

  5. Blanco, J.A., Johnson, M.K., Jaquess, K.J., Oh, H., Lo, L.C., Gentili, R.J., Hatfield, B.D.: Quantifying cognitive workload in simulated flight using passive, dry EEG measurements. IEEE Trans. Cogn. Develop. Syst. 10(2), 373–383 (2016)

    Article  Google Scholar 

  6. Bogner, M.S.: Human Error in Medicine. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  7. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Article  Google Scholar 

  8. Brookhuis, K., Waard, D.D., Mulder, B.: Measuring driving performance by car-following in traffic. Ergonomics 37(3), 427–434 (1994)

    Article  Google Scholar 

  9. Cain, B.: A review of the mental workload literature. Technical Report, Defence Research And Development Toronto (Canada) (2007)

    Google Scholar 

  10. Catherwood, D., Edgar, G.K., Nikolla, D., Alford, C., Brookes, D., Baker, S., White, S.: Mapping brain activity during loss of situation awareness: an EEG investigation of a basis for top-down influence on perception. Hum. Factors 56(8), 1428–1452 (2014)

    Article  Google Scholar 

  11. Chapman, A.C., Micillo, R.A., Kota, R., Jennings, N.R.: Decentralised dynamic task allocation: A practical game: Theoretic approach. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 915–922. International Foundation for Autonomous Agents and Multiagent Systems (2009)

    Google Scholar 

  12. Chen, J.Y., Haas, E.C., Barnes, M.J.: Human performance issues and user interface design for teleoperated robots. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(6), 1231–1245 (2007)

    Google Scholar 

  13. Chien, S.Y., Sycara, K., Liu, J.S., Kumru, A.: Relation between trust attitudes toward automation, hofstede’s cultural dimensions, and big five personality traits. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 60, pp. 841–845. SAGE Publications Sage CA, Los Angeles (2016)

    Google Scholar 

  14. Cooke, N.J.: Human factors of remotely operated vehicles. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 166–169. SAGE Publications Sage CA, Los Angeles (2006)

    Google Scholar 

  15. Corwin, W.H., Sandry-Garza, D.L., Biferno, M.H., Boucek Jr, G.P., Logan, A.L.: Assessment of crew workload measurement methods, techniques and procedures. Volume 1. Process, methods and results. Technical Report, Douglas Aircraft Co Long Beach CA (1989)

    Google Scholar 

  16. Council, N.R., et al.: Quantitative Modeling of Human Performance in Complex, Dynamic Systems. National Academies Press, Washington (1990)

    Google Scholar 

  17. Council, N.R., et al.: Tactical Display for Soldiers: Human Factors Considerations. National Academies Press, Washington (1997)

    Google Scholar 

  18. Das, G.P., McGinnity, T.M., Coleman, S.A., Behera, L.: A distributed task allocation algorithm for a multi-robot system in healthcare facilities. J. Intell. Rob. Syst. 80(1), 33–58 (2015)

    Article  Google Scholar 

  19. Debie, E., Rojas, R.F., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt, M., Abbass, H.A.: Multimodal fusion for objective assessment of cognitive workload: a review. IEEE Trans. Cybern. 1–4 (2019)

    Google Scholar 

  20. DeSteno, D., Breazeal, C., Frank, R.H., Pizarro, D., Baumann, J., Dickens, L., Lee, J.J.: Detecting the trustworthiness of novel partners in economic exchange. Psychol. Sci. 23(12), 1549–1556 (2012)

    Article  Google Scholar 

  21. Dijksterhuis, C., de Waard, D., Brookhuis, K., Mulder, B., de Jong, R.: Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns. Front. Neurosci. 7, 149 (2013)

    Article  Google Scholar 

  22. Dong, S.Y., Kim, B.K., Lee, K., Lee, S.Y.: A preliminary study on human trust measurements by EEG for human-machine interactions. In: Proceedings of the 3rd International Conference on Human-Agent Interaction, pp. 265–268. ACM, New York (2015)

    Google Scholar 

  23. Dorneich, M.C., Passinger, B., Hamblin, C., Keinrath, C., Vašek, J., Whitlow, S.D., Beekhuyzen, M.: Evaluation of the display of cognitive state feedback to drive adaptive task sharing. Front. Neurosci. 11, 144 (2017)

    Article  Google Scholar 

  24. Elkin-Frankston, S., Bracken, B.K., Irvin, S., Jenkins, M.: Are behavioral measures useful for detecting cognitive workload during human-computer interaction? In: Advances in The Human Side of Service Engineering, pp. 127–137. Springer, Berlin (2017)

    Google Scholar 

  25. Endsley, M.R.: Situation awareness global assessment technique (SAGAT). In: Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, pp. 789–795. IEEE, Piscataway (1988)

    Google Scholar 

  26. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Fact. 37(1), 32–64 (1995). 06296. https://doi.org/10.1518/001872095779049543

  27. Endsley, M.R., Garland, D.J.: Situation awareness analysis and measurement. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  28. Fernandez Rojas, R., Debie, E., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt, M., Abbass, H.A.: Encephalographic assessment of situation awareness in teleoperation of human-swarm teaming. In: Proceedings of The 26th International Conference on Neural Information Processing 2019. Springer, Berlin (2019)

    Google Scholar 

  29. Fernandez-Rojas, R., Perry, A., Singh, H., Campbell, B., Elsayed, S., Hunjet, R., Abbass, H.A.: Contextual awareness in human-advanced-vehicle systems: a survey. IEEE Access 7, 33304–33328 (2019)

    Article  Google Scholar 

  30. Fischer, J.E., Greenhalgh, C., Jiang, W., Ramchurn, S.D., Wu, F., Rodden, T.: In-the-loop or on-the-loop? Interactional arrangements to support team coordination with a planning agent. In: Concurrency and Computation: Practice and Experience, p. e4082 (2017)

    Google Scholar 

  31. Flanagan, J.C.: The critical incident technique. Psychol. Bullet. 51(4), 327 (1954)

    Article  Google Scholar 

  32. Gaudiello, I., Zibetti, E., Lefort, S., Chetouani, M., Ivaldi, S.: Trust as indicator of robot functional and social acceptance. an experimental study on user conformation to iCub answers. Comput. Human Behav. 61, 633–655 (2016)

    Google Scholar 

  33. Gawron, V.J.: Human performance, workload, and situational awareness measures handbook. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  34. Ha, J.S., Seong, P.H., Lee, M.S., Hong, J.H.: Development of human performance measures for human factors validation in the advanced MCR of APR-1400. IEEE Trans. Nuclear Sci. 54(6), 2687–2700 (2007)

    Article  Google Scholar 

  35. Hancock, P.A., Meshkati, N.: Human Mental Workload. North-Holland, Amsterdam (1988)

    Google Scholar 

  36. Harbour, J.L.: Lean Human Performance Improvement. Productivity Press, Boca Raton (2014)

    Google Scholar 

  37. Harriott, C.E., Seiffert, A.E., Hayes, S.T., Adams, J.A.: Biologically-inspired human-swarm interaction metrics. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 58, pp. 1471–1475. SAGE Publications Sage CA, Los Angeles (2014)

    Google Scholar 

  38. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task load index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988). 07598

    Google Scholar 

  39. Helmreich, R.L., Davies, J.M.: 3 Human factors in the operating room: Interpersonal determinants of safety, efficiency and morale. Baillière’s Clin. Anaesthesiol. 10(2), 277–295 (1996). 00147. https://doi.org/10.1016/S0950-3501(96)80017-1

  40. Hill, S.G., Iavecchia, H.P., Byers, J.C., Bittner Jr, A.C., Zaklade, A.L., Christ, R.E.: Comparison of four subjective workload rating scales. Hum. Factors 34(4), 429–439 (1992)

    Article  Google Scholar 

  41. Hirshfield, L., Bobko, P., Barelka, A., Sommer, N., Velipasalar, S.: Toward interfaces that help users identify misinformation online: using fnirs to measure suspicion. Augment. Hum. Res. 4(1), 1 (2019)

    Article  Google Scholar 

  42. Hoff, K.A., Bashir, M.: Trust in automation: Integrating empirical evidence on factors that influence trust. Hum. Factors 57(3), 407–434 (2015)

    Article  Google Scholar 

  43. Hussein, A., Elsawah, S., Abbass, H.A.: Trust mediating reliability–reliance relationship in supervisory control of human–swarm interactions. Hum. Factors (2019) https://doi.org/10.1177/0018720819879273

  44. Hussein, A., Elsawah, S., Abbass, H.A.: The reliability and transparency bases of trust in human-swarm interaction: principles and implications. Ergonomics 63, 1–19 (2020)

    Article  Google Scholar 

  45. Hussein, A., Ghignone, L., Nguyen, T., Salimi, N., Nguyen, H., Wang, M., Abbass, H.A.: Towards bi-directional communication in human-swarm teaming: A survey (2018). Preprint arXiv:1803.03093

    Google Scholar 

  46. Jian, J.Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined scale of trust in automated systems. Int. J. Cognit. Ergon. 4(1), 53–71 (2000)

    Article  Google Scholar 

  47. Jones, D.G., Endsley, M.R.: Sources of situation awareness errors in aviation. Aviat. Space Environ. Med. 67, 507–512 (1996). 00423

    Google Scholar 

  48. Joosse, M., Sardar, A., Lohse, M., Evers, V.: BEHAVE-II: The revised set of measures to assess users’ attitudinal and behavioral responses to a social robot. Int. J. Soc. Rob. 5(3), 379–388 (2013)

    Article  Google Scholar 

  49. Kaber, D.B., Riley, J.M., Zhou, R., Draper, J.: Effects of visual interface design, and control mode and latency on performance, telepresence and workload in a teleoperation task. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 44, pp. 503–506. SAGE Publications Sage CA, Los Angeles (2000)

    Google Scholar 

  50. Kaber, D.B., Wright, M.C., Prinzel III, L.J., Clamann, M.P.: Adaptive automation of human-machine system information-processing functions. Hum. Factors 47(4), 730–741 (2005)

    Article  Google Scholar 

  51. Keller, J., Lebiere, C., Shay, C.R., Latorella, K.: Cockpit system situational awareness modeling tool. Human Perform. Situation Awareness Autom. Current Res. Trends HPSAA II 2, 66–71 (2004). 00010

    Google Scholar 

  52. Khalid, H.M., Shiung, L.W., Nooralishahi, P., Rasool, Z., Helander, M.G., Kiong, L.C., Ai-vyrn, C.: Exploring psycho-physiological correlates to trust: Implications for human-robot-human interaction. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 60, pp. 697–701. SAGE Publications Sage CA, Los Angeles (2016)

    Google Scholar 

  53. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction with robot swarms: A survey. IEEE Trans. Human-Mach. Syst. 46(1), 9–26 (2015)

    Article  Google Scholar 

  54. Kramer, R.M.: Trust and distrust in organizations: emerging perspectives, enduring questions. Ann. Rev. Psychol. 50(1), 569–598 (1999)

    Article  Google Scholar 

  55. Krueger, F., McCabe, K., Moll, J., Kriegeskorte, N., Zahn, R., Strenziok, M., Heinecke, A., Grafman, J.: Neural correlates of trust. Proc. Natl. Acad. Sci. 104(50), 20084–20089 (2007)

    Article  Google Scholar 

  56. Larzelere, R.E., Huston, T.L.: The dyadic trust scale: toward understanding interpersonal trust in close relationships. J. Marriage Family 42, 595–604 (1980)

    Article  Google Scholar 

  57. Laughery, K., Lebiere, C., Archer, S.: Modeling human performance in complex systems. In: Handbook of Human Factors and Ergonomics, pp. 965–996 (2006)

    Google Scholar 

  58. Lee, J., Moray, N.: Trust, control strategies and allocation of function in human-machine systems. Ergonomics 35(10), 1243–1270 (1992)

    Article  Google Scholar 

  59. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors 46(1), 50–80 (2004)

    Article  MathSciNet  Google Scholar 

  60. Lingard, L., Espin, S., Whyte, S., Regehr, G., Baker, G.R., Reznick, R., Bohnen, J., Orser, B., Doran, D., Grober, E.: Communication failures in the operating room: An observational classification of recurrent types and effects. BMJ Qual. Saf. 13(5), 330–334 (2004). 01001

    Google Scholar 

  61. Longo, L.: Human-computer interaction and human mental workload: Assessing cognitive engagement in the world wide web. In: IFIP Conference on Human-Computer Interaction, pp. 402–405. Springer, Berlin (2011)

    Google Scholar 

  62. Lyons, J.B., Stokes, C.K.: Human–human reliance in the context of automation. Hum. Factors 54(1), 112–121 (2012)

    Article  Google Scholar 

  63. Ma-Wyatt, A., Fidock, J., Abbass, H.: Quantifying and predicting human performance for effective human-autonomy teaming. In: Proceedings of The 2018 International Conference on Science and Innovation for Land Power, pp. 915–922. Industry Defence and Security Australia Limited, Victoria (2018)

    Google Scholar 

  64. Madsen, M., Gregor, S.: Measuring human-computer trust. In: 11th Australasian Conference on Information Systems, vol. 53, pp. 6–8. Citeseer (2000)

    Google Scholar 

  65. Maior, H.A., Pike, M., Wilson, M.L., Sharples, S.: Continuous detection of workload overload: An fnirs approach. In: Contemporary Ergonomics and Human Factors 2014: Proceedings of the international conference on Ergonomics & Human Factors 2014, Southampton, 7–10 April 2014, p. 450. CRC Press, Boca Raton (2014)

    Google Scholar 

  66. Marieb, E.N., Hoehn, K.: Human Anatomy & Physiology. Pearson Education, London (2007)

    Google Scholar 

  67. Marsh, S., Dibben, M.R.: The role of trust in information science and technology. Ann. Rev. Inf. Sci. Technol. 37(1), 465–498 (2003)

    Article  Google Scholar 

  68. Master, R., Gramopadhye, A., Melloy, B., Bingham, J., Jiang, X.: A questionnaire for measuring trust in hybrid inspection systems. In: Proceedings of the Industrial Engineering Research Conference, Dallas (2000)

    Google Scholar 

  69. Megaw, T.: The definition and measurement of mental workload. In: Evaluation of Human Work, pp. 530–556, 3rd edn. CRC Press, Boca Raton (2005)

    Google Scholar 

  70. Merritt, S.M., Heimbaugh, H., LaChapell, J., Lee, D.: I trust it, but i don’t know why: effects of implicit attitudes toward automation on trust in an automated system. Hum. Factors 55(3), 520–534 (2013)

    Article  Google Scholar 

  71. Montague, E., Xu, J., Chiou, E.: Shared experiences of technology and trust: an experimental study of physiological compliance between active and passive users in technology-mediated collaborative encounters. IEEE Trans. Human-Mach. Syst. 44(5), 614–624 (2014)

    Article  Google Scholar 

  72. Muir, B.M., Moray, N.: Trust in automation. Part II: experimental studies of trust and human intervention in a process control simulation. Ergonomics 39(3), 429–460 (1996)

    Google Scholar 

  73. Müller, J.A., Wendt, D., Kollmeier, B., Brand, T.: Comparing eye tracking with electrooculography for measuring individual sentence comprehension duration. PloS One 11(10), e0164,627 (2016)

    Article  Google Scholar 

  74. Mutz, D.C., Reeves, B.: The new videomalaise: effects of televised incivility on political trust. Am. Political Sci. Rev. 99(1), 1–15 (2005)

    Article  Google Scholar 

  75. Nisbett, R.E., Wilson, T.D.: Telling more than we can know: verbal reports on mental processes. Psychol. Rev. 84(3), 231 (1977)

    Article  Google Scholar 

  76. Norman, D.A.: The ‘problem’ with automation: inappropriate feedback and interaction, not ‘over-automation’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 327(1241), 585–593 (1990)

    Article  Google Scholar 

  77. Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R.A.: Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In: Proceedings of the 24th Australian Computer-Human Interaction Conference, pp. 420–423. ACM, New York (2012)

    Google Scholar 

  78. Oh, S., Seong, Y., Yi, S.: Preliminary study on neurological measure of human trust in autonomous systems. In: IIE Annual Conference. Proceedings, pp. 1066–1072. Institute of Industrial and Systems Engineers (IISE), Georgia (2017)

    Google Scholar 

  79. O’Hara, J.M., Hall, R.E.: Advanced control rooms and crew performance issues: implications for human reliability. IEEE Trans. Nuclear Sci. 39(4), 919–923 (1992)

    Article  Google Scholar 

  80. Parasuraman, R., Molloy, R., Singh, I.L.: Performance consequences of automation-induced’complacency’. Int. J. Aviation Psychol. 3(1), 1–23 (1993)

    Article  Google Scholar 

  81. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: Situation awareness, mental workload, and trust in automation: viable, empirically supported cognitive engineering constructs. J. Cogn. Eng. Decis. Mak. 2(2), 140–160 (2008)

    Article  Google Scholar 

  82. Parush, A., Kramer, C., Foster-Hunt, T., Momtahan, K., Hunter, A., Sohmer, B.: Communication and team situation awareness in the OR: implications for augmentative information display. J. Biomed. Inf. 44(3), 477–485 (2011). 00093

    Google Scholar 

  83. Peck, E.M.M., Yuksel, B.F., Ottley, A., Jacob, R.J., Chang, R.: Using fnirs brain sensing to evaluate information visualization interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 473–482. ACM, Berlin (2013)

    Google Scholar 

  84. Polvichai, J.: Modeling team performance for coordination configurations of large multi-agent teams using stochastic neural networks. Ph.D. Thesis, University of Pittsburgh (2008)

    Google Scholar 

  85. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling procedure for measuring mental workload. Adv. Psychol. 52, 185–218 (1988). 00635

    Google Scholar 

  86. Rempel, J.K., Holmes, J.G., Zanna, M.P.: Trust in close relationships. J. Pers. Soc. Psychol. 49(1), 95 (1985)

    Article  Google Scholar 

  87. Rojas, R.F., Debie, E., Fidock, J., Barlow, M., Kasmarik, K., Anavatti, S., Garratt, M., Abbass, H.: Electroencephalographic workload indicators during teleoperation of an unmanned aerial vehicle shepherding a swarm of unmanned ground vehicles in contested environments. Front. Neurosci. 14 (2020)

    Google Scholar 

  88. Rojas, R.F., Huang, X., Ou, K.L.: Region of interest detection and evaluation in functional near infrared spectroscopy. J. Near Infrared Spec. 24(4), 317–326 (2016)

    Article  Google Scholar 

  89. Rojas, R.F., Huang, X., Ou, K.L.: Toward a functional near-infrared spectroscopy-based monitoring of pain assessment for nonverbal patients. J. Biomed. Opt. 22(10), 106,013 (2017)

    Google Scholar 

  90. Rojas, R.F., Huang, X., Ou, K.L.: A machine learning approach for the identification of a biomarker of human pain using fnirs. Sci. Rep. 9(1), 5645 (2019)

    Article  Google Scholar 

  91. Rotter, J.B.: A new scale for the measurement of interpersonal trust 1. J. Personal. 35(4), 651–665 (1967)

    Article  Google Scholar 

  92. Rubio, S., Díaz, E., Martín, J., Puente, J.M.: Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods. Appl. Psychol. 53(1), 61–86 (2004)

    Article  Google Scholar 

  93. Sanchez, J., Rogers, W.A., Fisk, A.D., Rovira, E.: Understanding reliance on automation: effects of error type, error distribution, age and experience. Theor. Issues Ergon. Sci. 15(2), 134–160 (2014)

    Article  Google Scholar 

  94. Shah, J., Kim, B., Nikolaidis, S.: Human-inspired techniques for human-machine team planning. In: 2012 AAAI Fall Symposium Series (2012)

    Google Scholar 

  95. Singh, I.L., Molloy, R., Parasuraman, R.: Automation-induced “complacency”: development of the complacency-potential rating scale. Int. J. Aviat. Psychol. 3(2), 111–122 (1993)

    Article  Google Scholar 

  96. Spravka, J.J., Moisio, D.A., Payton, M.G.: Unmanned air vehicles: A new age in human factors evaluations. Technical Report, Air Force Flight Test Center Edwards AFB CA (2003)

    Google Scholar 

  97. Stein, E.S.: The measurement of pilot performance: A master-journeyman approach. Technical Report, Federal Aviation Administration Technical Center Atlantic City NJ (1984)

    Google Scholar 

  98. Stokes, C.K., Lyons, J.B., Littlejohn, K., Natarian, J., Case, E., Speranza, N.: Accounting for the human in cyberspace: Effects of mood on trust in automation. In: 2010 International Symposium on Collaborative Technologies and Systems, pp. 180–187. IEEE, Piscataway (2010)

    Google Scholar 

  99. Taylor, R.: Situational awareness rating technique (SART): The development of a tool for aircrew systems design. In: Situational Awareness, pp. 111–128. Routledge, Abingdon (2017)

    Google Scholar 

  100. Thornton, R.C.: The effects of automation and task difficulty on crew coordination, workload, and performance. Doctor of Philosophy (PhD), Dissertation, Psychology, Old Dominion University (1992). 00019

    Google Scholar 

  101. Uggirala, A., Gramopadhye, A.K., Melloy, B.J., Toler, J.E.: Measurement of trust in complex and dynamic systems using a quantitative approach. Int. J. Ind. Ergon. 34(3), 175–186 (2004)

    Article  Google Scholar 

  102. Veltman, J., Gaillard, A.: Physiological indices of workload in a simulated flight task. Biol. Psychol. 42(3), 323–342 (1996)

    Article  Google Scholar 

  103. Vidulich, M.A., Hughes, E.R.: Testing a subjective metric of situation awareness. In: Proceedings of the Human Factors Society Annual Meeting, vol. 35, pp. 1307–1311. SAGE Publications Sage CA, Los Angeles (1991)

    Google Scholar 

  104. Vidulich, M., Tsang, P.: Techniques of subjective workload assessment: a comparison of SWAT and the NASA-Bipolar methods. Ergonomics 29(11), 1385–1398 (1986). 00067

    Google Scholar 

  105. Vizer, L.M., Zhou, L., Sears, A.: Automated stress detection using keystroke and linguistic features: an exploratory study. Int. J. Human-Comput. Stud. 67(10), 870–886 (2009)

    Article  Google Scholar 

  106. Wang, M., Hussein, A., Rojas, R.F., Shafi, K., Abbass, H.A.: Eeg-based neural correlates of trust in human-autonomy interaction. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 350–357. IEEE, Piscataway (2018)

    Google Scholar 

  107. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2), 159–177 (2002)

    Article  Google Scholar 

  108. Wickens, C.D., Hollands, J.G., Banbury, S., Parasuraman, R.: Engineering Psychology and Human Performance. Psychology Press, London (2015)

    Book  Google Scholar 

  109. Wierwille, W.W., Casali, J.G.: A Validated Rating Scale for Global Mental Workload Measurement Applications. pp. 129–133. Sage Publications Sage CA, Los Angeles (1983). 00247

    Google Scholar 

  110. Wilson, G.F.: Strategies for psychophysiological assessment of situation awareness. In: Situation Awareness Analysis and Measurement, pp. 175–188. CRC Press, Boca Raton (2000)

    Google Scholar 

  111. Xie, B., Salvendy, G.: Review and reappraisal of modelling and predicting mental workload in single- and multi-task environments. Work & Stress 14(1), 74–99 (2000). https://doi.org/10.1080/026783700417249. 00142

    Article  Google Scholar 

  112. Yagoda, R.E., Gillan, D.J.: You want me to trust a ROBOT? The development of a human–robot interaction trust scale. Int. J. Soc. Rob. 4(3), 235–248 (2012)

    Google Scholar 

  113. Yamagishi, T.: The provision of a sanctioning system as a public good. J. Pers. Soc. Psychol. 51(1), 110 (1986)

    Article  Google Scholar 

  114. Yamagishi, T., Yamagishi, M.: Trust and commitment in the united states and japan. Motiv. Emot. 18(2), 129–166 (1994)

    Article  Google Scholar 

  115. Yeo, L.G., Sun, H., Liu, Y., Trapsilawati, F., Sourina, O., Chen, C.H., Mueller-Wittig, W., Ang, W.T.: Mobile EEG-based situation awareness recognition for air traffic controllers. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3030–3035. IEEE, Piscataway (2017)

    Google Scholar 

  116. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58(1), 1–17 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Fernandez Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojas, R.F. et al. (2021). Human Performance Operating Picture for Shepherding a Swarm of Autonomous Vehicles. In: Abbass, H.A., Hunjet, R.A. (eds) Shepherding UxVs for Human-Swarm Teaming. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-60898-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60898-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60897-2

  • Online ISBN: 978-3-030-60898-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics