Skip to main content

Thermodynamic Properties of Ultracold Fermi Gases Across the BCS-BEC Crossover and the Bertsch Problem

  • Conference paper
  • First Online:
Mathematical Challenges of Zero-Range Physics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 42))

  • 548 Accesses

Abstract

In this chapter we review the thermodynamic properties of ultracold Fermi gases in which the strength of the interaction is continuously varied. The system features a crossover between a state described by the BCS theory of superconductivity and a Bose-Einstein condensate. A discussion of the Bertsch problem is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zwerger, W. (ed.): The BCS-BEC Crossover and Unitary Fermi Gas. Springer , Heidelberg (2012)

    Google Scholar 

  2. Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215 (2008)

    Article  Google Scholar 

  3. Ogg, R.A.: Bose-Einstein condensation of trapped electron pairs. Phase separation and superconductivity of metal-ammonia solutions. Phys. Rev. Lett. 69, 243 (1946)

    Google Scholar 

  4. Schafroth, M.R.: Theory of superconductivity. Phys. Rev. 96, 1442 (1954)

    Article  Google Scholar 

  5. Blatt, J.M.: Theory of Superconductivity. Academic, New York (1974)

    MATH  Google Scholar 

  6. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  MathSciNet  Google Scholar 

  7. Yang, C.N.: Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694 (1962)

    Article  MathSciNet  Google Scholar 

  8. Eagles, D.M.: Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456 (1969)

    Article  Google Scholar 

  9. Leggett, A.J.: Diatomic molecules and Cooper pairs. In: Modern Trends in the Theory of Condensed Matter. Lecture Notes in Physics, vol. 115, p. 13. Springer, Berlin, Heidelberg (1980); Cooper pairing in spin-polarized Fermi systems. J. Phys. (Paris) Colloq. 41, C7-19 (1980)

    Google Scholar 

  10. P. Nozières, S. Schmitt-Rink, Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195 (1985)

    Article  Google Scholar 

  11. Sa de Melo, C.A.R., Randeria, M., Engelbrecht, J.R.: Crossover from BCS to Bose superconductivity - Transition temparetaure and time-dependent Ginzburg-Landau theory. Phys. Rev. Lett. 71, 3202 (1993)

    Google Scholar 

  12. Leggett, A.J.: Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  13. Iori, M.: Proprietà termodinamiche di fermioni ultrafreddi con accoppiamento spin-orbita. Graduation Thesis. Università degli Studi di Torino (2013)

    Google Scholar 

  14. Ho, T.L.: Universal thermodynamics of degenerate quantum gases in the unitarity limit. Phys. Rev. Lett. 92, 090402 (2004)

    Article  Google Scholar 

  15. Marini, M., Pistolesi, F., Strinati, G.C.: Evolution from BCS superconductivity to Bose condensation: analytic results for the crossover in three dimensions. Eur. Phys. J. 1, 151 (1998)

    Article  Google Scholar 

  16. Altland, A., Simons, B.D.: Condensed Matter Field Theory. Cambridge University Press, Cambrdige (2006)

    Book  Google Scholar 

  17. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. McGraw-Hill, New York (1971)

    Google Scholar 

  18. Gorkov, L.P., Melik-Barkhudarov, T.M.: Contribution to the theory of superfluidity in an imperfect Fermi gas. Sov. Phys.: J. Exp. Theor. Phys. 13, 1018 (1961) [Zh. Eksp. Teor. Fiz. 40, 1452 (1961)]

    Google Scholar 

  19. Pethick, C., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambrdige (2002)

    Google Scholar 

  20. Pisani, L., Perali, A., Pieri, P., Strinati, G.C.: Entanglement between pairing and screening in the Gorkov-Melik-Barkhudarov correction to the critical temperature throughout the BCS-BEC crossover. Phys. Rev. B 97, 014528 (2018)

    Article  Google Scholar 

  21. Ku, M.J.H., Sommer, A.T., Cheuk, L.W., Zwierlein, M.W.: Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563 (2012)

    Article  Google Scholar 

  22. Zürn, G., Lompe, T., Wenz, A.N., Jochim, S., Julienne, P.S., Hutson, J.M.: Precise characterization of 6Li feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013)

    Article  Google Scholar 

  23. Forbes, M.M., Gandolfi, S., Gezerlis, A.: Resonantly interacting Fermions in a box. Phys. Rev. Lett. 106, 235303 (2011)

    Article  Google Scholar 

  24. Carlson, J., Gandolfi, S., Schmidt, K.E., Zhang, S.: Auxiliary-field quantum Monte Carlo method for strongly paired fermions. Phys. Rev. A 84, 061602(R) (2011)

    Google Scholar 

  25. Carlson, J., Gandolfi, S., Gezerlis, A.: Quantum Monte Carlo approaches to nuclear and atomic physics. Prog. Theor. Exp. Phys. 2012, 01A209 (2012)

    Google Scholar 

  26. Pessoa, R., Gandolfi, S., Vitiello, S.A., Schmidt, K.E.: Contact interaction in an unitary ultracold Fermi gas. Phys. Rev. A 92, 063625 (2015)

    Article  Google Scholar 

  27. Shankar, R.: Principles of Quantum Mechanics. Plenum, New York (1994)

    Book  Google Scholar 

Download references

Acknowledgements

Discussions during the years with N. Defenu, L. Dell’Anna, G. Dell’Antonio, S. Fantoni, G. Gori, M. Iazzi, A. Michelangeli, G. Panati and C. Sa De Mélo are very gratefully acknowledged. T.M. acknowledges CNPq for support through Bolsa de produtividade em Pesquisa n.311079/2015-6. This work was supported by the Serrapilheira Institute (grant number Serra-1812-27802), CAPES-NUFFIC project number 88887.156521/2017-00. T.M. and A.T. thanks the Physics Department of the University of L’Aquila for the hospitality where part of the work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Trombettoni .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we review the definition of the partition function for a fermionic system with the use of Grassmann variables. Consider a fermionic system described by fermionic operators which are associated with Grassmann variables [27]:

$$\displaystyle \begin{aligned}\varPsi\left|\psi\right>=\psi\left|\psi\right> \quad \text{and}\quad \left<\bar{\psi}\right|\varPsi^\dagger=\left<\bar{\psi}\right|\bar{\psi},\end{aligned}$$

where \(\left |\psi \right >\) and \(\left <\bar {\psi }\right |\) indicate coherent states, which can be decomposed as:

$$\displaystyle \begin{aligned}\left|\psi\right>=\left|0\right>-\psi\left|1\right>.\end{aligned}$$

The states \(\left |0\right >\) and \(\left |1\right >\) are the only ones possible and indicate the states with zero and one particle respectively. The fermion operators anti-commutate and therefore we have:

$$\displaystyle \begin{aligned}\left\{\varPsi,\varPsi\right\}=\left\{\varPsi^\dagger,\varPsi^\dagger\right\}=0, \qquad \qquad \left\{\varPsi,\varPsi^\dagger\right\}=1.\end{aligned}$$

The following properties of the Grassmann variables are obtained:

$$\displaystyle \begin{aligned}\psi^2=\bar{\psi}^2=0;\end{aligned}$$
$$\displaystyle \begin{aligned}\left<\bar{\psi}|\psi\right>=\left<0|0\right>+\left<1|\bar{\psi}\,\psi|1\right>=e^{\bar{\psi}\psi};\end{aligned}$$
$$\displaystyle \begin{aligned}\int \psi\, d\psi=-\int d\psi\,\psi=1;\end{aligned}$$
$$\displaystyle \begin{aligned}\int 1\, d\psi=0.\end{aligned}$$

In general

$$\displaystyle \begin{aligned}\int x_{j_n}\dots x_{j_1}\, dx_{i_1}\dots dx_{i_n}=\epsilon \begin{pmatrix} j_1 & \dots & j_n \\ i_1 & \dots & i_n \end{pmatrix} \end{aligned}$$

and is different from zero only if \(\left (j_1\dots j_n\right )\) coincide with \(\left (i_1\dots i_n\right )\).

$$\displaystyle \begin{aligned}\epsilon\begin{pmatrix} j_1 & \dots & j_n \\ i_1 & \dots & i_n \end{pmatrix} = \left \{ \begin{array}{rl} 1 \quad \text{with an even number of permutations} \\ -1 \quad \text{with an odd number of permutations}\\ \end{array} \right . \end{aligned}$$

We then have the following relations:

  • Gaussian integrals:

    $$\displaystyle \begin{aligned}\int e^{-\bar{\psi}M\psi}\mathscr{D}\left[\bar{\psi},\psi\right]=det\, M;\end{aligned}$$
  • completeness relation:

    $$\displaystyle \begin{aligned}I=\int\left|\psi\right>\left<\bar{\psi}\right|e^{-\bar{\psi}\psi}\mathscr{D}\left[\bar{\psi},\psi\right];\end{aligned}$$
  • trace of an operator:

    $$\displaystyle \begin{aligned}\text{Tr}\varOmega=\int \left<-\bar{\psi}\right|\varOmega\left|\psi\right>e^{-\bar{\psi}\psi}\mathscr{D}\left[\bar{\psi},\psi\right];\end{aligned}$$

where with \(\mathscr {D}\left [\bar {\psi },\psi \right ]\) we mean the functional integral.

The completeness relation is obtained developing coherent states and the exponential:

$$\displaystyle \begin{aligned}\int\left(\left|0\right>+\left|1\right>\psi\right) & \left(\left<0\right|-\bar{\psi}\left<1\right|\right)\left(1-\bar{\psi}\psi\right)\mathscr{D}\left[\bar{\psi},\psi\right] = \\ & \int \left(-\left|0\right>\left<0\right|\bar{\psi}\psi+\left|1\right>\left<1\right|\right)\psi\bar{\psi})\mathscr{D}\left[\bar{\psi},\psi\right]= \left|0\right>\left<0\right|+\left|1\right>\left<1\right|=1\!\!1, \end{aligned}$$

while an operator trace is obtained from:

$$\displaystyle \begin{aligned}\text{Tr}\varOmega & =\int\left(\left<0\right|+\left<1\right|\bar{\psi}\right)\varOmega\left(\left|0\right>-\psi\left|1\right>\right)\left(1-\bar{\psi}\psi\right)\mathscr{D}\left[\bar{\psi},\psi\right]= \\ & \int\left(-\left<0\right|\varOmega\left|0\right>\bar{\psi}\psi -\left<1\right|\varOmega\left|1\right>\bar{\psi}\psi\right)\mathscr{D}\left[\bar{\psi},\psi\right]=\left<0\right|\varOmega\left|0\right>+\left<1\right|\varOmega\left|1\right>= \text{Tr} \varOmega. \end{aligned}$$

The partition function of a canonical ensemble is defined as:

$$\displaystyle \begin{aligned}Z=\sum_n e^{-\beta E_n}= \text{Tr} e^{-\beta E_n}.\end{aligned}$$

It can be written using the path integral approach, developing the exponential trace, using

$$\displaystyle \begin{aligned}e^{-\beta H}=\lim_{N\rightarrow\infty}\left(exp\left(-\frac{\beta H}{N}\right)\right)^N=\underbrace{\left(1-\frac{\beta H}{N}\right)\dots\left(1-\frac{\beta H}{N}\right)}_{\text{N times}},\end{aligned}$$

for large N. Then

$$\displaystyle \begin{aligned} Z &=\int\left<-\bar{\psi}_0\right|\left(1-\frac{\beta H}{N}\right)\dots\left(1-\frac{\beta H}{N}\right)\left|\psi_0\right>e^{-\bar{\psi}_0\psi_0}\mathscr{D}\left[\bar{\psi}_0,\psi_0\right]= \\ &= \int\left<-\bar{\psi}_0\right|\left(1-\frac{\beta H}{N}\right)\left|\psi_{N-1}\right> \left<\bar{\psi}_{N-1}\right|\left(1-\frac{\beta H}{N}\right)\left|\psi_{N-2}\right>\dots \\& \qquad \qquad \qquad \qquad \dots\left<\bar{\psi}_{1}\right|\left(1-\frac{\beta H}{N}\right)\left|\psi_{0}\right>\prod_{i=0}^{N-1}e^{-\bar{\psi}_i\psi_i}d\bar{\psi}_i\psi_i,\end{aligned}$$

where N − 1 completeness relations were inserted.

Since we are dealing with fermionic systems, it is necessary to impose anti-periodic boundary conditions

$$\displaystyle \begin{aligned}-\bar{\psi}_0=\bar{\psi}_N \quad \text{and}\quad -\psi_0=\psi_N.\end{aligned}$$

Then

$$\displaystyle \begin{aligned}Z=\int\prod_{i=0}^{N-1}\left(\left<\bar{\psi}_{i+1}\right|\left(1-\frac{\beta H}{N}\right)\left|\psi_i\right>e^{-\bar{\psi}_i\psi_i}d\bar{\psi}_i d\psi_i\right),\end{aligned}$$

from which

$$\displaystyle \begin{aligned}Z=\int\prod_{i=0}^{N-1}exp\bigg\{\frac{\beta}{N}\left[\frac{\bar{\psi}_{i+1}-\bar{\psi}_i}{\beta/N}\psi_i-H\left(\bar{\psi}_{i+1},\psi_i\right)\right]\bigg\}d\bar{\psi}_i d\psi_i.\end{aligned}$$

Define now τ as the imaginary time (the inverse of the temperature) that will vary between 0 and β. We can then (non-rigorously) see \(\frac {\bar {\psi }_{i+1}-\bar {\psi }_i}{\beta /N}\) as to the derivative with respect to this time.

Analogously we can perform the approximation

$$\displaystyle \begin{aligned}H\left(\bar{\psi}_{i+1},\psi_i\right)=H\left(\bar{\psi}\left(\tau+\frac{\beta}{N}\right),\psi\left(\tau\right)\right).\end{aligned}$$

Introducing the action

$$\displaystyle \begin{aligned}S=\sum_{i=0}^{N}\left[\bar{\psi}_i\left(\psi_i-\psi_{i-1}\right)+\frac{\beta}{N}H\left(\bar{\psi}_i,\psi_{i-1}\right)\right],\end{aligned}$$

in the limit \(\epsilon =\frac {\beta }{N}\rightarrow 0\) and then for N → one has

$$\displaystyle \begin{aligned}S=\int_0^\beta d\tau\left[\bar{\psi}\left(\tau\right)\partial_\tau\psi\left(\tau\right)+H\left(\bar{\psi}\left(\tau\right),\psi\left(\tau\right)\right)\right]. \end{aligned}$$

In conclusion it is possible to rewrite the system partition function as

$$\displaystyle \begin{aligned}Z=\int\mathscr{D}\left[\bar{\psi},\psi\right]e^{-S\left[\bar{\psi},\psi\right]},\end{aligned}$$

or, more explicitly

$$\displaystyle \begin{aligned}Z=\int \mathscr{D}\left[\bar{\psi},\psi\right]exp\bigg\{\int_0^\beta \bar{\psi}\left(\tau\right)\left(-\frac{\partial}{\partial \tau}-H\right)\psi\left(\tau\right)d\tau\bigg\}.\end{aligned}$$

In the grand canonical ensemble, we can introduce the number operator \(\hat {N}\)

$$\displaystyle \begin{aligned}N=\sum_{k,\sigma=\uparrow\downarrow}c^\dagger_{k\sigma}c_{k\sigma},\end{aligned}$$

with \(c^\dagger _{k\sigma }\) e c are defined from

$$\displaystyle \begin{aligned}\psi_\sigma\left(\mathbf{x}\right)=\sum_k\frac{e^{i\mathbf{rk}}}{\sqrt{V}}c_{k\sigma},\qquad \psi^\dagger_\sigma\left(\mathbf{x}\right)=\sum_k\frac{e^{-i\mathbf{rk}}}{\sqrt{V}}c^\dagger_{k\sigma}.\end{aligned}$$

Therefore, in a fermionic system, with anti-periodic boundary conditions in imaginary time:

$$\displaystyle \begin{aligned}\psi_\sigma\left(\beta,\mathbf{x}\right)=-\psi_\sigma\left(0,\mathbf{x}\right) \quad \text{and}\quad \bar{\psi}_\sigma\left(\beta,\mathbf{x}\right)=-\bar{\psi}_\sigma\left(0,\mathbf{x}\right),\end{aligned}$$

the action of the system becomes

$$\displaystyle \begin{aligned}S\left[\bar{\psi}_\sigma,\psi_\sigma\right]=\int_0^\beta d\tau\int d\mathbf{x}\sum_{\sigma}\bar{\psi}_\sigma \left(x\right)\left(\frac{\partial}{\partial \tau}-\mu\right)\psi_\sigma\left(x\right)+H\left(x\right),\end{aligned}$$

with \(x=\left (\tau ,\mathbf {x}\right )\).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iori, M., Macrì, T., Trombettoni, A. (2021). Thermodynamic Properties of Ultracold Fermi Gases Across the BCS-BEC Crossover and the Bertsch Problem. In: Michelangeli, A. (eds) Mathematical Challenges of Zero-Range Physics. Springer INdAM Series, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-60453-0_1

Download citation

Publish with us

Policies and ethics