Skip to main content

Discovering Functional Brain Networks with 3D Residual Autoencoder (ResAE)

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

Functional MRI has attracted increasing attention in cognitive neuroscience and clinical mental health research. Towards understanding how brain give rises to mental phenomena, deep learning has been applied to functional MRI (fMRI) dataset to discover the physiological basis of cognitive process. Considering the unsupervised nature of fMRI due to the complex intrinsic brain activities, an encoder-decoder structure is promising to model hidden structure of latent signal sources. Inspired by the success of deep residual learning, we propose a 68-layer 3D residual autoencoder (3D ResAE) to model deep representations of fMRI in this paper. The proposed model is evaluated on the fMRI data under 3 cognitive tasks in Human Connectome Project (HCP). The experimental results have shown that the temporal representations learned by the encoder matches the task design and the spatial representations can be interpreted to be meaningful functional brain networks (FBNs), which not only include tasks based FBNs, but also intrinsic FBNs. The proposed model also outperforms a 3-layer autoencoder, showing the key factor for the performance improvement is depth. Our work demonstrates the feasibility and success of adopting 2D advanced deep residual networks in computer vision into 3D fMRI volume modeling.

Q. Dong and N. Qiang—Equally contribution to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huettel, S.A., et al.: Functional Magnetic Resonance Imaging, vol. 1. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  2. Smith, S.M., et al.: Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106(31), 13040–13045 (2009)

    Article  Google Scholar 

  3. Pessoa, L.: Understanding brain networks and brain organization. Phys. Life Rev. 11(3), 400–435 (2014)

    Article  Google Scholar 

  4. Lv, J., et al.: Task fMRI data analysis based on supervised stochastic coordinate coding. Med. Image Anal. 38, 1–16 (2017)

    Article  Google Scholar 

  5. Archbold, K.H., et al.: Neural activation patterns during working memory tasks and OSA disease severity: preliminary findings. J. Clin. Sleep Med. 5(01), 21–27 (2009)

    Article  Google Scholar 

  6. Barch, D.M., et al.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  7. Binder, J.R., et al.: Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. Neuroimage 54(2), 1465–1475 (2011)

    Article  Google Scholar 

  8. Dosenbach, N.U., et al.: A core system for the implementation of task sets. Neuron 50(5), 799–812 (2006)

    Article  Google Scholar 

  9. Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. 107(25), 11163–11170 (2010)

    Article  Google Scholar 

  10. McKeown, M.J.: Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. NeuroImage 11(1), 24–35 (2000)

    Article  Google Scholar 

  11. Calhoun, V.D., et al.: A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14(3), 140–151 (2001)

    Article  Google Scholar 

  12. Beckmann, C.F., et al.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457), 1001–1013 (2005)

    Article  Google Scholar 

  13. Calhoun, V.D., et al.: Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73 (2012)

    Article  Google Scholar 

  14. Beckmann, C.F., et al.: General multilevel linear modeling for group analysis in FMRI. Neuroimage 20(2), 1052–1063 (2003)

    Article  Google Scholar 

  15. Jiang, X., et al.: Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex. Hum. Brain Mapp. 36(12), 5301–5319 (2015)

    Article  Google Scholar 

  16. Lv, J., et al.: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function. IEEE Trans. Biomed. Eng. 62(4), 1120–1131 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, X., et al.: Multple-demand system identification and characterization via sparse representations of fMRI data. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE (2016)

    Google Scholar 

  18. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)

    Article  Google Scholar 

  19. Bengio, Y., et al.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  20. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  21. Yamins, D.L., et al.: Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19(3), 356 (2016)

    Article  Google Scholar 

  22. Hjelm, R.D., et al.: Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks. NeuroImage 96, 245–260 (2014)

    Article  Google Scholar 

  23. Jang, H., et al.: Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: evaluation using sensorimotor tasks. NeuroImage 145, 314–328 (2017)

    Article  Google Scholar 

  24. Dong, Q., et al.: Modeling hierarchical brain networks via volumetric sparse deep belief network (VS-DBN). IEEE Trans. Biomed. Eng. (2019)

    Google Scholar 

  25. Huang, H., et al.: Modeling task fMRI data via mixture of deep expert networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)

    Google Scholar 

  26. Huang, H., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551–1561 (2018)

    Article  Google Scholar 

  27. Zhao, Y., et al.: 4D modeling of fMRI data via spatio-temporal convolutional neural networks (ST-CNN). IEEE Trans. Cogn. Dev. Syst. (2019)

    Google Scholar 

  28. Wang, H., et al.: Recognizing brain states using deep sparse recurrent neural network. IEEE Trans. Med. Imaging 38, 1058–1068 (2018)

    Article  Google Scholar 

  29. Li, Q., et al.: Simultaneous spatial-temporal decomposition of connectome-scale brain networks by deep sparse recurrent auto-encoders. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 579–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_45

    Chapter  Google Scholar 

  30. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  32. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human Connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  33. Jenkinson, M., et al.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  MathSciNet  Google Scholar 

  34. Ioffe, S., et al.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  35. Kingma, D.P., et al.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  36. Abraham, A., et al.: Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanzheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Q., Qiang, N., Lv, J., Li, X., Liu, T., Li, Q. (2020). Discovering Functional Brain Networks with 3D Residual Autoencoder (ResAE). In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics