Skip to main content

Frontiers of Immersive Gaming Technology: A Survey of Novel Game Interaction Design and Serious Games for Cognition

  • Chapter
  • First Online:
Recent Advances in Technologies for Inclusive Well-Being

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 196))

Abstract

This chapter presents an overview of novel game interaction design using brain computer interface (BCI), electroencephalography (EEG) and eye tracking.Our main goal is to highlight particular applications of these novel interfaces in digital games and accessible computing technology. We also investigate commercial offerings within these areas, such as mass-market “brain-training” games. Given the growing popularity and the relative novelty of these interfaces, this chapter reviews the current state of the art to gain an understanding of how the field may look moving forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.oculus.com/.

  2. 2.

    https://www.vive.com/eu/.

  3. 3.

    https://www.tobii.com/.

  4. 4.

    https://www.xbox.com/en-CA/xbox-one/accessories/kinect.

  5. 5.

    https://www.playstation.com/en-ca/explore/accessories/vr-accessories/playstation-move/.

  6. 6.

    https://store.neurosky.com/pages/mindwave.

  7. 7.

    https://www.emotiv.com/.

  8. 8.

    https://tobiigaming.com/.

  9. 9.

    https://half-life.wikia.com/wiki/Source_SDK.

References

  1. Shute, V.J., Ventura, M., Bauer, M., Zapata-Rivera, D.: Melding the power of serious games and embedded assessment to monitor and foster learning. In: Ritterfeld, U., Cody, M., Vorderer, P. (eds.) Serious Games: Mechanisms and Effects, pp. 295–321. Routedle Publishers, New York (2009)

    Google Scholar 

  2. Thorpe, A., Ma, M., Oikonomou, A.: History and alternative game input methods. In: Proceedings of the 16th International Conference on Computer Games, pp. 76–93 (2011). https://doi.org/10.1109/CGAMES.2011.6000321

  3. Vallabhaneni, A., Wang, T., He, B.: Brain-computer interface. In: He, B. (ed.) Neural Engineering, pp. 85–121. Springer, US, USA (2005)

    Chapter  Google Scholar 

  4. Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 70–85 (2003). https://doi.org/10.1109/TNSRE.2003.810426

    Article  Google Scholar 

  5. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991). https://doi.org/10.1016/0013-4694(91)90040-B

    Article  Google Scholar 

  6. Ramaswamy, P.: Electroencephalogram-based brain–computer interface: An introduction. In Miranda, E.R., Castet, J. (eds.) Guide to Brain-Computer Music Interfacing, pp. 29–41. Springer, London (2014)

    Google Scholar 

  7. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  8. Blankertz, B., Tangermann, M., Vidaurre, C., Fazli, S., Sannelli, C., Haufe, S., Maeder, C., Ramsey, L., Sturm, I., Gabriel, C., and Muller, K.: The Berlin brain-computer interface: non-medical uses of BCI technology. Front. Neurosc. 2010(4): 198:1–198:17 (2010). https://doi.org/10.3389/fnins.2010.00198

  9. Marshall, D., Coyle, D., Wilson, S., Callaghan, M.: Games, gameplay, and BCI: The state of the art. IEEE Trans. Comput. Intell. AI Games 5(2), 82–99 (2013). https://doi.org/10.1109/TCIAIG.2013.2263555

    Article  Google Scholar 

  10. Lalor, E.C., Kelly, S.P., Finucane, C., Burke, R., Smith, R., Reilly, R.B., McDarby, G.: Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP J. Appl. Signal Process. 2005, 3156–3164 (2005). https://doi.org/10.1155/ASP.2005.3156

    Article  MATH  Google Scholar 

  11. van Vliet, M., Robben, A., Chumerin, N., Manyakov, V., Combaz, A., Van Hulle, M.M.: Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In: Proceedings of the Biosignals and Biorobotics Conference (2012). https://doi.org/10.1109/BRC.2012.6222186

  12. Pires, G., Torres, M., Casaleiro, N., Nunes, U., Castelo-Branco, M.: Playing tetris with non-invasive BCI. In: Proceedings of IEEE SeGAH 2011. https://doi.org/10.1109/SeGAH.2011.6165454

  13. Nijboer, F., van de Laar, B., Gerritsen, S., Nijholt, A., Poel, M.: Usability of three electroencephalogram headsets for brain-computer interfaces: a within subject comparison. Interact. Comput. 27(5), 500–511 (2015). https://doi.org/10.1093/iwc/iwv023

    Article  Google Scholar 

  14. Ekandem, J.I., Davis, T.A., Alvarez, I., James, M.T., Gilbert, J.E.: Evaluating the ergonomics of BCI devices for research and experimentation. Ergonomics 55(5), 592–598 (2012). https://doi.org/10.1080/00140139.2012.662527

    Article  Google Scholar 

  15. Alchalcabi, A.E., Eddin, A.N., Shirmohammadi, S.: More attention, less deficit: wearable EEG-based serious game for focus improvement. In: 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8, Perth, WA (2017).https://doi.org/10.1109/SeGAH.2017.7939288

  16. Gudmundsdottir, K.: Improving players’ control over the NeuroSky brain-computer interface. Undergraduate Research Thesis, Reykjavik University, Iceland (2011)

    Google Scholar 

  17. Yoh, M., Kwon, J., Kim, S.: NeuroWander: a BCI game in the form of interactive fairy tale. In: 12th ACM International Conference Adjunct Papers on Ubiquitous Computing, pp. 389–390 (2010). https://doi.org/10.1145/1864431.1864450

  18. NeuroSky: EEG games Top 5 list: playing with your brainwaves (2015). Retrieved from https://neurosky.com/2015/09/eeg-games-top-5-list-playing-with-your-brainwaves/

  19. O’Donovan, J., Ward, J., Hodgins, S., Sundstedt, V.: Rabbit run: gaze and voice based game interaction. In: Proceedings of the 9th Irish Eurographics Workshop (2009)

    Google Scholar 

  20. Tobii, A.B.: Eye tracking in gaming, how does it work? (2017). Retrieved from https://help.tobii.com/hc/en-us/articles/115003295025-Eye-tracking-in-gaming-how-does-it-work

  21. Jacob, R.J.K., Karn, K.S.: Eye tracking in human-computer interaction and usability research: ready to deliver the promises (Commentary on Section 4). In: Hyona, J., Radach, R., Deubel, H. (eds.) The Mind’s Eye: Cognitive and Applied Apsects of Eye Movement Research, pp. 573–605. Elsevier Science, Amsterdam (2003)

    Chapter  Google Scholar 

  22. Cheng, D., Vertegaal, R.: An eye for an eye: a performance evaluation comparison of the LC technologies and Tobii eye trackers. In: Proceedings of ETRA ‘04, 61 (2004). https://doi.org/10.1145/968363.968378

  23. Smith, J.D., Graham, T.C.N.: Use of eye movements for video game control. In: Proceedings of ACE ‘06, Article No. 20 (2006). https://doi.org/10.1145/1178823.1178847

  24. Kos’myna, N., & Tarpin-Bernard, F. : Evaluation and comparison of a multimodal combination of BCI paradigms and eye tracking with affordable consumer-grade hardware in a gaming context. IEEE Trans. Comput. Intell. AI Games 5(2), 150–154 (2013). https://doi.org/10.1109/TCIAIG.2012.2230003

    Article  Google Scholar 

  25. Sundstedt, V.: Gazing at games: using eye tracking to control virtual characters. In: ACM SIGGRAPH 2010 Courses, vol. 5(1–5), 160 (2010)

    Google Scholar 

  26. Nacke, L., Stellmach, S., Sasse, D., Lindley, C.A.: Gameplay experience in a gaze interaction game. Proc. COGAIN 2009, 49–54 (2009) (arXiv:1004.0259)

    Google Scholar 

  27. Machkovech, S.: Augmenting the FPS: how well does Tobii track your gaze in a video game? Ars Technica (2016). Retrieved from https://arstechnica.com/gaming/2016/08/augmenting-the-fps-how-well-does-tobii-track-your-gaze-in-a-video-game/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Mirza-Babaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stahlke, S.N., Bellyk, J.D., Meier, O.R., Mirza-Babaei, P., Kapralos, B. (2021). Frontiers of Immersive Gaming Technology: A Survey of Novel Game Interaction Design and Serious Games for Cognition. In: Brooks, A.L., Brahman, S., Kapralos, B., Nakajima, A., Tyerman, J., Jain, L.C. (eds) Recent Advances in Technologies for Inclusive Well-Being. Intelligent Systems Reference Library, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-59608-8_28

Download citation

Publish with us

Policies and ethics