Skip to main content

Computing Covers Under Substring Consistent Equivalence Relations

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2020)

Abstract

Covers are a kind of quasiperiodicity in strings. A string C is a cover of another string T if any position of T is inside some occurrence of C in T. The shortest and longest cover arrays of T have the lengths of the shortest and longest covers of each prefix of T, respectively. The literature has proposed linear-time algorithms computing longest and shortest cover arrays taking border arrays as input. An equivalence relation \(\approx \) over strings is called a substring consistent equivalence relation (SCER) iff \(X \approx Y\) implies (1) \(|X| = |Y|\) and (2) \(X[i:j] \approx Y[i:j]\) for all \(1 \le i \le j \le |X|\). In this paper, we generalize the notion of covers for SCERs and prove that existing algorithms to compute the shortest cover array and the longest cover array of a string T under the identity relation will work for any SCERs taking the accordingly generalized border arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some references it is called superprimitive, reserving the term “primitive” for strings that cannot be represented as \(S^k\) for some string S and integer \(k \ge 2\).

References

  1. Aho, A.V., Hopcroft, J.E.: The design and analysis of computer algorithms. Pearson Education India (1974)

    Google Scholar 

  2. Amir, A., Levy, A., Lubin, R., Porat, E.: Approximate cover of strings. Theor. Comput. Sci. 793, 59–69 (2019). https://doi.org/10.1016/j.tcs.2019.05.020

    Article  MathSciNet  MATH  Google Scholar 

  3. Amir, A., Aumann, Y., Lewenstein, M., Porat, E.: Function matching. SIAM J. Comput. 35(5), 1007–1022 (2006)

    Article  MathSciNet  Google Scholar 

  4. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized matching. Inf. Process. Lett. 49(3), 111–115 (1994). https://doi.org/10.1016/0020-0190(94)90086-8

    Article  MATH  Google Scholar 

  5. Antoniou, P., Crochemore, M., Iliopoulos, C., Jayasekera, I., Landau, G.: Conservative string covering of indeterminate strings. In: Prague Stringology Conference 2008, pp. 108–115 (2008)

    Google Scholar 

  6. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings. Theor. Comput. Sci. 119(2), 247–265 (1993). https://doi.org/10.1016/0304-3975(93)90159-Q

    Article  MathSciNet  MATH  Google Scholar 

  7. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-0190(91)90056-N

    Article  MathSciNet  MATH  Google Scholar 

  8. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings. Discrete Appl. Math. 156(9), 1389–1398 (2008). https://doi.org/10.1016/j.dam.2006.11.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Comput. Syst. Sci. 52(1), 28–42 (1996). https://doi.org/10.1006/jcss.1996.0003

    Article  MathSciNet  MATH  Google Scholar 

  10. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6), 345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 397–411. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_33

    Chapter  Google Scholar 

  12. Christou, M., Crochemore, M., Guth, O., Iliopoulos, C.S., Pissis, S.P.: On left and right seeds of a string. J. Discrete Algorithms 17, 31–44 (2012)

    Article  MathSciNet  Google Scholar 

  13. Christou, M., et al.: Efficient seed computation revisited. Theor. Comput. Sci. 483, 171–181 (2013). https://doi.org/10.1016/j.tcs.2011.12.078

    Article  MathSciNet  MATH  Google Scholar 

  14. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing Co., Pte. Ltd. (2002). https://doi.org/10.1142/9789812778222

  15. Diptarama, Ueki, Y., Narisawa, K., Shinohara, A.: KMP based pattern matching algorithms for multi-track strings. In: Proceedings of Student Research Forum Papers and Posters at SOFSEM2016, pp. 100–107 (2016)

    Google Scholar 

  16. Ehlers, T., Manea, F., Mercaş, R., Nowotka, D.: \(k\)-abelian pattern matching. J. Discrete Algorithms 34, 37–48 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gourdel, G., Kociumaka, T., Radoszewski, J., Rytter, W., Shur, A., Waleń, T.: String periods in the order-preserving model. Inf. Comput. 270(104463), 1–22 (2020). https://doi.org/10.1016/j.ic.2019.104463

    Article  MathSciNet  MATH  Google Scholar 

  18. Hendrian, D., Ueki, Y., Narisawa, K., Yoshinaka, R., Shinohara, A.: Permuted pattern matching algorithms on multi-track strings. Algorithms 12(4), 73:1–20 (2019). https://doi.org/10.3390/a12040073

  19. Iliopoulos, C., Mouchard, L.: Quasiperiodicity: from detection to normal forms. J. Autom. Lang. Comb. 4, 213–228 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3), 288–297 (1996). https://doi.org/10.1007/BF01955677

    Article  MathSciNet  MATH  Google Scholar 

  21. Katsura, T., Narisawa, K., Shinohara, A., Bannai, H., Inenaga, S.: Permuted pattern matching on multi-track strings. In: SOFSEM 2013: Theory and Practice of Computer Science, pp. 280–291 (2013). https://doi.org/10.1007/978-3-642-35843-2_25

  22. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi, S.J., Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79 (2014). https://doi.org/10.1016/j.tcs.2013.10.006

    Article  MathSciNet  MATH  Google Scholar 

  23. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2), 323–350 (1977)

    Article  MathSciNet  Google Scholar 

  24. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett. 113(12), 430–433 (2013). https://doi.org/10.1016/j.ipl.2013.03.015

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1), 95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Matsuoka, Y., Aoki, T., Inenaga, S., Bannai, H., Takeda, M.: Generalized pattern matching and periodicity under substring consistent equivalence relations. Theor. Comput. Sci. 656, 225–233 (2016). https://doi.org/10.1016/j.tcs.2016.02.017

    Article  MathSciNet  MATH  Google Scholar 

  27. Moore, D., Smyth, W.: An optimal algorithm to compute all the covers of a string. Inf. Process. Lett. 50(5), 239–246 (1994). https://doi.org/10.1016/0020-0190(94)00045-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Moore, D., Smyth, W.: A correction to “an optimal algorithm to compute all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995). https://doi.org/10.1016/0020-0190(94)00235-Q

    Article  Google Scholar 

  29. Park, S.G., Amir, A., Landau, G.M., Park, K.: Cartesian tree matching and indexing. In: 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019), pp. 16:1–16:14 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsumi Kikuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kikuchi, N., Hendrian, D., Yoshinaka, R., Shinohara, A. (2020). Computing Covers Under Substring Consistent Equivalence Relations. In: Boucher, C., Thankachan, S.V. (eds) String Processing and Information Retrieval. SPIRE 2020. Lecture Notes in Computer Science(), vol 12303. Springer, Cham. https://doi.org/10.1007/978-3-030-59212-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59212-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59211-0

  • Online ISBN: 978-3-030-59212-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics