Skip to main content

Passive Particle Dynamics in Viscous Vortex Flow

  • Conference paper
  • First Online:
CONTROLO 2020 (CONTROLO 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 695))

Included in the following conference series:

Abstract

We focus on the description of point vortices both in inviscid and viscous environments and try to extend the idea of quantification of chaos in inviscid vortex systems of Babiano et al.  [1] to viscous environments. In particular, we notice that viscosity can disrupt stable dynamics and cause initially stable trajectories to go through chaotic behavior, before succumbing to viscosity completely. We also find that the logarithms of the duration of this chaotic behavior and the kinematic viscosity coefficient seem to be connected by a linear relationship. Most approaches to control of point vortices don’t take viscosity into account. However, viscosity exists in most real fluids. As such, it is important to take it into account to try to obtain better descriptions of real world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babiano, A., Boffetta, G., Provenzale, A., Vulpiani, A.: Chaotic advection in point vortex models and two-dimensional turbulence. Phys. Fluids 6(7), 2465–2474 (1994). https://doi.org/10.1063/1.868194

    Article  MathSciNet  MATH  Google Scholar 

  2. Aref, H.: Motion of three vortices. Phys. Fluids 22(3), 393–400 (1979). https://doi.org/10.1063/1.862605

    Article  MathSciNet  MATH  Google Scholar 

  3. Aref, H.: Integrable, chaotic, and turbulent vortex motion in two-dimensional flows. Annu. Rev. Fluid Mech. 15, 345–389 (1983). https://doi.org/10.1146/annurev.fl.15.010183.002021

    Article  MathSciNet  MATH  Google Scholar 

  4. Pereira, F.L., Grilo, T., Gama, S.: Optimal multi-process control of a two vortex driven particle in the plane. IFAC-PapersOnLine 50(1), 2193–2198 (2017). https://doi.org/10.1016/j.ifacol.2017.08.280

    Article  Google Scholar 

  5. Pereira, F.L., Grilo, T., Gama, S.: Optimal control framework for auv’s motion planning in planar vortices vector field. In: 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pp. 1–6 (2018). https://doi.org/10.1109/auv.2018.8729782

  6. Protas, B.: Vortex dynamics models in flow control problems. Nonlinearity 21(9), R203–R250 (2008). https://doi.org/10.1088/0951-7715/21/9/r01

    Article  MathSciNet  MATH  Google Scholar 

  7. Newton, P.: The N-Vortex Problem: Analytical Techniques. Applied Mathematical Sciences. Springer, New York (2001)

    Book  Google Scholar 

  8. Chorin, A.: Vorticity and Turbulence. Applied Mathematical Sciences. Springer, New York (1994)

    Book  Google Scholar 

  9. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511800955

  10. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511840531

  11. Gallay, T., Wayne, C.E.: Global stability of vortex solutions of the two-dimensional Navier-Stokes equation. Commun. Math. Phys. 255(1), 97–129 (2005). https://doi.org/10.1007/s00220-004-1254-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Gallay, T.: Interaction of vortices in weakly viscous planar flows. Arch. Ration. Mech. Anal. 200(2), 445–490 (2011). https://doi.org/10.1007/s00205-010-0362-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: theory. Meccanica 15(1), 9–20 (1980). https://doi.org/10.1007/BF02128236

    Article  MATH  Google Scholar 

  14. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 2: numerical application. Meccanica 15(1), 21–30 (1980). https://doi.org/10.1007/BF02128237

    Article  MATH  Google Scholar 

  15. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 65(1), 117–134 (1993). https://doi.org/10.1016/0167-2789(93)90009-P

    Article  MathSciNet  MATH  Google Scholar 

  17. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185(1), 77–87 (1994). https://doi.org/10.1016/0375-9601(94)90991-1

    Article  Google Scholar 

  18. Awrejcewicz, J., Krysko, A., Erofeev, N., Dobriyan, V., Barulina, M., Krysko, V.: Quantifying chaos by various computational methods. Part 1: simple systems. Entropy 20(3), 175 (2018). https://doi.org/10.3390/e20030175

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CMUP (GM, MJR, SG), which is financed by national funds through FCT – Fundação para a Ciência e a Tecnologia, I.P., under the project with reference UIDB/00144/2020; by Project STRIDE NORTE-01-0145-FEDER-000033 (SG), funded by ERDF NORTE 2020; and by project MAGIC POCI-01-0145- FEDER-032485 (SG), funded by FEDER via COMPETE 2020 - POCI and by FCT/MCTES via PIDDAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques, G., Rodrigues, M.J., Gama, S. (2021). Passive Particle Dynamics in Viscous Vortex Flow. In: Gonçalves, J.A., Braz-César, M., Coelho, J.P. (eds) CONTROLO 2020. CONTROLO 2020. Lecture Notes in Electrical Engineering, vol 695. Springer, Cham. https://doi.org/10.1007/978-3-030-58653-9_34

Download citation

Publish with us

Policies and ethics