Skip to main content

The Transition from Isolated Resonances to the Continuum

  • Conference paper
  • First Online:
Compound-Nuclear Reactions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 254))

  • 483 Accesses

Abstract

Many nuclear reactions of astrophysical importance are modeled by Hauser-Feshbach calculations, the well-established approach for computing average cross sections when many resonant levels are involved. This approach assumes that the density of levels is sufficient that only average properties, such as optical potentials and level densities, are sufficient to model the reaction. However, for intermediate masses or near the drip lines, these assumptions may break down. We have performed Monte Carlo simulations of the reaction cross section in order to assess the statistical error in the cross section or reaction rate prediction arising from the low density of states. The case of the 34Ar(α, p)37K reaction, which is an important reaction in x-ray bursts, is used as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Rauscher, The path to improved reaction rates for astrophysics. Int. J. Mod. Phys. E 20, 1071–1169 (2011). https://doi.org/10.1142/S021830131101840X. http://www.worldscientific.com/doi/abs/10.1142/S021830131101840X

  2. J.L. Fisker, F.K. Thielemann, M. Wiescher, The nuclear reaction waiting points: 22Mg, 26Si, 30S, and 34Ar and bolometrically double-peaked type I x-ray bursts. Astrophys. J. Lett. 608, L61 (2004). https://doi.org/10.1086/422215

    Article  ADS  Google Scholar 

  3. A. Parikh, J. José, F. Moreno, C. Iliadis, The effects of variations in nuclear processes on type I x-ray burst nucleosynthesis. Astrophys. J. Suppl. Ser. 178, 110 (2008). https://doi.org/10.1086/589879

    Article  ADS  Google Scholar 

  4. C. Deibel et al.: Radioactive ion beam studies of αp process waiting points in x-ray bursts. PoS (NIC XII) 146, 044 (2013). https://doi.org/10.22323/1.146.0044. https://pos.sissa.it/146/044/

  5. A.M. Long et al.: Indirect study of the stellar 34Ar(α, p)37K reaction rate through 40Ca(p, t)38Ca reaction measurements. Phys. Rev. C 95, 055803 (2017). https://link.aps.org/doi/10.1103/PhysRevC.95.055803

    Article  ADS  Google Scholar 

  6. A.C. Lauer, Studying the reaction 34AR(ALPHA,P)37K and its impact on XRB nucleosynthesis and observables. Ph.D. thesis (Louisiana State University, Louisiana, 2017). http://digitalcommons.lsu.edu/gradschool_dissertations/4118

  7. P.E. Hodgson, Compound nucleus reactions. Rep. Prog. Phys. 50, 1171–1228 (1987). https://doi.org/10.1088/0034-4885/50/9/002

    Article  ADS  Google Scholar 

  8. P. Mohr, R. Longland, C. Iliadis, Thermonuclear reaction rate of 18Ne(α, p)21Na from Monte Carlo calculations. Phys. Rev. C 90, 065806 (2014). https://doi.org/10.1103/PhysRevC.90.065806. http://link.aps.org/doi/10.1103/PhysRevC.90.065806

  9. P.A. Moldauer, Why the Hauser-Feshbach formula works. Phys. Rev. C 11, 426–436 (1975). https://doi.org/10.1103/PhysRevC.11.426. http://link.aps.org/doi/10.1103/PhysRevC.11.426

  10. T. Kawano, P. Talou, H.A. Weidenmüller, Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte Carlo technique. Phys. Rev. C 92, 044,617 (2015). https://doi.org/10.1103/PhysRevC.92.044617. http://link.aps.org/doi/10.1103/PhysRevC.92.044617

  11. P.A. Moldauer, Average resonance widths in single-channel scattering. Phys. Rev. 177, 1841–1842 (1969). https://doi.org/10.1103/PhysRev.177.1841. https://link.aps.org/doi/10.1103/PhysRev.177.1841

  12. M. Simonius, Unitarity and the energy averaged S-matrix. Phys. Lett. B 52(3), 279–281 (1974). https://doi.org/10.1016/0370-2693(74)90040-9. http://www.sciencedirect.com/science/article/pii/0370269374900409

  13. T. Rauscher, F.K. Thielemann, Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75(1), 1–351 (2000). https://doi.org/10.1006/adnd.2000.0834. http://www.sciencedirect.com/science/article/pii/S0092640X00908349

  14. T. Rauscher, F.K. Thielemann, Tables of nuclear cross sections and reaction rates: an addendum to the paper “Astrophysical reaction rates from statistical model calculations”. At. Data Nucl. Data Tables 79(1), 47–64 (2001). https://doi.org/10.1006/adnd.2001.0863. http://www.sciencedirect.com/science/article/pii/S0092640X01908630

  15. T. Rauscher, Nuclear Astrophysics Results. Accessed: 8 June 2016. http://nucastro.org

  16. L. McFadden, G. Satchler, Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl. Phys. 84(1), 177–200 (1966). https://doi.org/10.1016/0029-5582(66)90441-X. http://www.sciencedirect.com/science/article/pii/002955826690441X

  17. M. Beckerman, Level densities for 23 ≤ A ≤ 40. Nucl. Phys. A 278(2), 333–356 (1977). https://doi.org/10.1016/0375-9474(77)90243-3. http://www.sciencedirect.com/science/article/pii/0375947477902433

  18. T. von Egidy, D. Bucurescu, Systematics of nuclear level density parameters. Phys. Rev. C 72, 044311 (2005). https://link.aps.org/doi/10.1103/PhysRevC.72.044311

    Article  ADS  Google Scholar 

  19. C.R. Brune, Alternative parametrization of R-matrix theory. Phys. Rev. C 66, 044,611 (2002). http://link.aps.org/doi/10.1103/PhysRevC.66.044611

    Article  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank K.A. Chipps, S.M. Grimes, M.A.A. Mamun, T. Rauscher, K. Schmidt, and A. Voinov for providing useful discussions and information. This work was supported in part by the U.S. Department of Energy, under Grants No. DE-FG02-88ER40387, DE-NA0002905, and DE-NA0003883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl R. Brune .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brune, C.R. (2021). The Transition from Isolated Resonances to the Continuum. In: Escher, J., et al. Compound-Nuclear Reactions . Springer Proceedings in Physics, vol 254. Springer, Cham. https://doi.org/10.1007/978-3-030-58082-7_5

Download citation

Publish with us

Policies and ethics