Skip to main content

Alveolar Hypoventilation and Non-invasive Ventilation in COPD

  • Chapter
  • First Online:
Complex Sleep Breathing Disorders

Abstract

The adoption of non-invasive ventilation in the home setting for patients with chronic obstructive pulmonary disease (COPD) has been slow, due to concern that adherence would be low and that quality of life may be compromised. However, home non-invasive ventilation can be effective in COPD with persistent hypercapnia (PaCO2 > 52 mmHg) while in a stable state. Device settings are equally important, as recent randomized trials have found significant advantages with settings that attempt to reduce the PaCO2 (inspiratory positive airway pressure (IPAP) 19–24 cmH2O and expiratory positive airway pressure (EPAP) 4–6 cmH2O), with benefits including a reduced risk of readmission, improved survival, and improvement in health-related quality of life and in adherence to the device. Although some studies have also recommended a high back-up rate to maximize PaCO2 reduction, adherence may not particularly improve with the selection of a back-up rate option. Future studies may need to address the potential confounding by sleep apnea in patients with the overlap syndrome of COPD and sleep apnea, the role of a back-up rate, and further refine the recommended device settings including the role of higher EPAP to address the potential threshold load from intrinsic positive end-expiratory pressure (PEEP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newell SZ, McKenzie DK, Gandevia SC. Inspiratory and skeletal muscle strength and endurance and diaphragmatic activation in patients with chronic airflow limitation. Thorax. 1989;44(11):903–12.

    Article  CAS  Google Scholar 

  2. Polkey MI, Kyroussis D, Hamnegard CH, Mills GH, Green M, Moxham J. Diaphragm strength in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(5):1310–7. https://doi.org/10.1164/ajrccm.154.5.8912741.

    Article  CAS  PubMed  Google Scholar 

  3. Sorli J, Grassino A, Lorange G, Milic-Emili J. Control of breathing in patients with chronic obstructive lung disease. Clin Sci Mol Med. 1978;54(3):295–304.

    CAS  PubMed  Google Scholar 

  4. Bellemare F, Grassino A. Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1190–5. https://doi.org/10.1152/jappl.1982.53.5.1190.

    Article  CAS  PubMed  Google Scholar 

  5. Poon CS, Tin C, Song G. Submissive hypercapnia: why COPD patients are more prone to CO2 retention than heart failure patients. Respir Physiol Neurobiol. 2015;216:86–93. https://doi.org/10.1016/j.resp.2015.03.001.

  6. Teopompi E, Tzani P, Aiello M, Ramponi S, Visca D, Gioia MR, et al. Ventilatory response to carbon dioxide output in subjects with congestive heart failure and in patients with COPD with comparable exercise capacity. Respir Care. 2014;59(7):1034–41. https://doi.org/10.4187/respcare.02629.

    Article  PubMed  Google Scholar 

  7. Laghi F, Shaikh HS, Morales D, Sinderby C, Jubran A, Tobin MJ. Diaphragmatic neuromechanical coupling and mechanisms of hypercapnia during inspiratory loading. Respir Physiol Neurobiol. 2014;198:32–41. https://doi.org/10.1016/j.resp.2014.03.004.

    Article  PubMed  Google Scholar 

  8. Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;7:CD004104. https://doi.org/10.1002/14651858.CD004104.pub4.

    Article  PubMed  Google Scholar 

  9. Hill NS. Noninvasive ventilation has been shown to be ineffective in stable COPD. Am J Respir Crit Care Med. 2000;161(3 Pt 1):689–90; discussion 91. https://doi.org/10.1164/ajrccm.161.3.16135b.

    Article  CAS  PubMed  Google Scholar 

  10. Strumpf DA, Millman RP, Carlisle CC, Grattan LM, Ryan SM, Erickson AD, et al. Nocturnal positive-pressure ventilation via nasal mask in patients with severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1991;144(6):1234–9. https://doi.org/10.1164/ajrccm/144.6.1234.

    Article  CAS  PubMed  Google Scholar 

  11. McEvoy RD, Pierce RJ, Hillman D, Esterman A, Ellis EE, Catcheside PG, et al. Nocturnal non-invasive nasal ventilation in stable hypercapnic COPD: a randomised controlled trial. Thorax. 2009;64(7):561–6. https://doi.org/10.1136/thx.2008.108274.

    Article  CAS  PubMed  Google Scholar 

  12. Lin CC. Comparison between nocturnal nasal positive pressure ventilation combined with oxygen therapy and oxygen monotherapy in patients with severe COPD. Am J Respir Crit Care Med. 1996;154(2 Pt 1):353–8. https://doi.org/10.1164/ajrccm.154.2.8756806.

    Article  CAS  PubMed  Google Scholar 

  13. Theerakittikul T, Hatipoglu U, Aboussouan LS. Hyperinflation on chest radiograph as a marker of low adherence to positive airway pressure therapy in the overlap syndrome. Respir Care. 2014;59(8):1267–74. https://doi.org/10.4187/respcare.03011.

    Article  PubMed  Google Scholar 

  14. Dreher M, Storre JH, Schmoor C, Windisch W. High-intensity versus low-intensity non-invasive ventilation in patients with stable hypercapnic COPD: a randomised crossover trial. Thorax. 2010;65(4):303–8. https://doi.org/10.1136/thx.2009.124263.

    Article  PubMed  Google Scholar 

  15. Windisch W, Haenel M, Storre JH, Dreher M. High-intensity non-invasive positive pressure ventilation for stable hypercapnic COPD. Int J Med Sci. 2009;6(2):72–6.

    Article  Google Scholar 

  16. Murphy PB, Brignall K, Moxham J, Polkey MI, Davidson AC, Hart N. High pressure versus high intensity noninvasive ventilation in stable hypercapnic chronic obstructive pulmonary disease: a randomized crossover trial. Int J Chron Obstruct Pulmon Dis. 2012;7:811–8. https://doi.org/10.2147/COPD.S36151.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bhatt SP, Peterson MW, Wilson JS, Durairaj L. Noninvasive positive pressure ventilation in subjects with stable COPD: a randomized trial. Int J Chron Obstruct Pulmon Dis. 2013;8:581–9. https://doi.org/10.2147/COPD.S53619.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Casanova C, Celli BR, Tost L, Soriano E, Abreu J, Velasco V, et al. Long-term controlled trial of nocturnal nasal positive pressure ventilation in patients with severe COPD. Chest. 2000;118(6):1582–90.

    Article  CAS  Google Scholar 

  19. Clini E, Sturani C, Rossi A, Viaggi S, Corrado A, Donner CF, et al. The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients. Eur Respir J. 2002;20(3):529–38.

    Article  CAS  Google Scholar 

  20. Garrod R, Mikelsons C, Paul EA, Wedzicha JA. Randomized controlled trial of domiciliary noninvasive positive pressure ventilation and physical training in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1335–41. https://doi.org/10.1164/ajrccm.162.4.9912029.

    Article  CAS  PubMed  Google Scholar 

  21. Kohnlein T, Windisch W, Kohler D, Drabik A, Geiseler J, Hartl S, et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med. 2014;2(9):698–705. https://doi.org/10.1016/S2213-2600(14)70153-5.

    Article  PubMed  Google Scholar 

  22. Murphy PB, Rehal S, Arbane G, Bourke S, Calverley PMA, Crook AM, et al. Effect of home noninvasive ventilation with oxygen therapy vs oxygen therapy alone on hospital readmission or death after an acute COPD exacerbation: a randomized clinical trial. JAMA. 2017;317(21):2177–86. https://doi.org/10.1001/jama.2017.4451.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Struik FM, Sprooten RT, Kerstjens HA, Bladder G, Zijnen M, Asin J, et al. Nocturnal non-invasive ventilation in COPD patients with prolonged hypercapnia after ventilatory support for acute respiratory failure: a randomised, controlled, parallel-group study. Thorax. 2014;69(9):826–34. https://doi.org/10.1136/thoraxjnl-2014-205126.

    Article  CAS  PubMed  Google Scholar 

  24. Duiverman ML, Wempe JB, Bladder G, Vonk JM, Zijlstra JG, Kerstjens HA, et al. Two-year home-based nocturnal noninvasive ventilation added to rehabilitation in chronic obstructive pulmonary disease patients: a randomized controlled trial. Respir Res. 2011;12:112. https://doi.org/10.1186/1465-9921-12-112.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–82. https://doi.org/10.1164/rccm.201701-0218PP.

    Article  CAS  PubMed  Google Scholar 

  26. Storre JH, Callegari J, Magnet FS, Schwarz SB, Duiverman ML, Wijkstra PJ, et al. Home noninvasive ventilatory support for patients with chronic obstructive pulmonary disease: patient selection and perspectives. Int J Chron Obstruct Pulmon Dis. 2018;13:753–60. https://doi.org/10.2147/COPD.S154718.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Local Coverage Determination (LCD): Respiratory Assist Devices (L33800) for DME MAC Jurisdictions A, B, C, and D. Available at https://www.cms.gov/medicare-coverage-database/

  28. Hill NS, Ugurlu AO. Home noninvasive ventilation to reduce readmissions for chronic obstructive pulmonary disease. JAMA. 2017;317(21):2167–9. https://doi.org/10.1001/jama.2017.5226.

    Article  PubMed  Google Scholar 

  29. MacIntyre NR, Cheng KC, McConnell R. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest. 1997;111(1):188–93.

    Article  CAS  Google Scholar 

  30. Elliott M. Domiciliary NIV for COPD: where are we now? Lancet Respir Med. 2014;2(9):672–3. https://doi.org/10.1016/s2213-2600(14)70159-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loutfi S. Aboussouan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aboussouan, L.S., Hatipoǧlu, U. (2021). Alveolar Hypoventilation and Non-invasive Ventilation in COPD. In: Won, C. (eds) Complex Sleep Breathing Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-57942-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57942-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57941-8

  • Online ISBN: 978-3-030-57942-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics