Skip to main content

Absolute Primary Radiometric Thermometry

  • Chapter
  • First Online:
Blackbody Radiometry

Abstract

Absolute primary radiometric thermometry is a recently introduced term for an approach to measuring the thermodynamic temperature of a blackbody using the accurate determination of the radiant flux that it emits in a known spectral band and known solid angle. The instrumental and metrological infrastructure for measuring thermodynamic temperature of high-temperature blackbodies are described. Four schemes of the filter radiometer calibration in terms of the spectral power, irradiance, and radiance and corresponding sources of measurement uncertainties are discussed. Calibration facilities on the base of tunable lasers and monochromators are described and compared. The state-of-the-art uncertainties in measuring temperature of the high-temperature blackbodies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    National Metrology Institute of Japan.

  2. 2.

    Sometimes, the RRR is defined via electrical resistance [Ω] and called residual resistance ratio. The upper and lower temperatures in the RRR definition may be slightly different, e.g. 298 and 4.2 K. Usually, difference in these two definitions is not critical.

  3. 3.

    Now, a Division of Perkin-Elmer Inc. re-oriented on biomedical imaging systems.

  4. 4.

    Physikalisch-Technische Bundesanstalt, the NMI of the Federal Republic of Germany.

  5. 5.

    Consultative Committee for Thermometry of the BIPM (International Bureau of Weights and Measures; French: Bureau international des poids et mesures).

  6. 6.

    National Research Council of Canada (https://nrc.canada.ca/en).

  7. 7.

    Physikalisch-Technische Bundesanstalt, the NMI of Federal Republic of Germany.

  8. 8.

    National Physical laboratory, the NMI of the UK (http://www.npl.co.uk).

  9. 9.

    National Institute of Metrology, Beijing, China.

  10. 10.

    Polytetrafluoroethylene, a synthetic fluoropolymer of tetrafluoroethylene; the most known trade mark of PTFE-based material is Spectralon developed by Labsphere, Inc. (https://www.labsphere.com/).

  11. 11.

    The NMI of France.

  12. 12.

    It should be noted that the speckle pattern is observed by imaging radiometers operating in the radiance mode. It is not clear whether this pattern will be observed in the measuring plane and whether it affects the measurements in the irradiance mode.

  13. 13.

    National Measurement Institute, the NMI of Australia (https://www.industry.gov.au/strategies-for-the-future/national-measurement-institute).

  14. 14.

    Measurement Standards Laboratory, the NMI of New Zealand.

References

  1. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors. Numerical Data and Graphical Information (Springer, NY, 1999)

    Google Scholar 

  2. S.M. Alessio, Digital Signal Processing and Spectral Analysis for Scientists. Concepts and Applications (Springer, Cham, Switzerland, 2016)

    MATH  Google Scholar 

  3. R.R. Alfano (ed.), The Supercontinuum Laser Source. The Ultimate White Light, 3rd edn. (Springer, New York, 2016)

    Google Scholar 

  4. D.W. Allen, R.D. Saunders, B.C. Johnson et al., The development and characterization of an absolute pyrometer calibrated for radiance responsivity. AIP Conf. Proc. 684, 577–582 (2003)

    ADS  Google Scholar 

  5. V.E. Anderson, N.P. Fox, D.H. Nettleton, Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry. Appl. Opt. 31, 536–545 (1992)

    ADS  Google Scholar 

  6. K. Anhalt, Radiometric Measurement of Thermodynamic Temperatures During the Phase Transformation of Metal-Carbon Eutectic Alloys for a New High-Temperature Scale Above 1000 °C. Ph.D. thesis (Technischen Universität Berlin, 2008), https://depositonce.tu-berlin.de/bitstream/11303/2310/1/Dokument_17.pdf. Accessed 30 May 2020

  7. K. Anhalt, J. Hartmann, D. Lowe et al., Thermodynamic temperature determinations of Co–C, Pd–C, Pt–C and Ru–C eutectic fixed-point cells. Metrologia 43, S78–S83 (2006)

    Google Scholar 

  8. K. Anhalt, Y. Wang, Y. Yamada, J. Hartmann, Large- and small-aperture fixed-point cells of Cu, Pt-C, and Re-C. Int. J. Thermophys. 29, 969–983 (2008)

    ADS  Google Scholar 

  9. K. Anhalt, A. Zelenjuk, D.R. Taubert et al., New PTB setup for the absolute calibration of the spectral responsivity of radiation thermometers. Int. J. Thermophys. 30, 192–202 (2009)

    ADS  Google Scholar 

  10. K. Anhalt, G. Machin, Thermodynamic temperature by primary radiometry. Philos. Trans. R. Soc. A 374, 20150041 (2016)

    ADS  Google Scholar 

  11. A. Antoniou, Digital Signal Processing. Signals, Systems and Filters (McGraw-Hill, New York, 2006)

    Google Scholar 

  12. T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures (Springer, New York, 1999)

    Google Scholar 

  13. G. Bianco, M.A. Ferrara, F. Borbone et al., Volume holographic gratings: fabrication and characterization. Proc. SPIE 9508, 950807 (2015)

    Google Scholar 

  14. W.R. Blevin, Diffraction losses in radiometry and photometry. Metrologia 6, 39–44 (1970)

    ADS  Google Scholar 

  15. W.R. Blevin, W.J. Brown, A precise measurement of the Stefan-Boltzmann constant. Metrologia 7, 15–29 (1971)

    ADS  Google Scholar 

  16. L.P. Boivin, Diffraction losses associated with tungsten lamps in in absolute radiometry. Appl. Opt. 14, 197–200 (1975)

    ADS  Google Scholar 

  17. L.P. Boivin, Diffraction corrections in radiometry: comparison of two different methods of calculation. Appl. Opt. 14, 2002–2009 (1975)

    ADS  Google Scholar 

  18. L.P. Boivin, Diffraction corrections in the radiometry of extended sources. Appl. Opt. 15, 1204–1209 (1976)

    ADS  Google Scholar 

  19. L.-P. Boivin, Spectral responsivity of various types of silicon photodiode at oblique incidence: comparison of measured and calculated values. Appl. Opt. 40, 485–491 (2001)

    ADS  Google Scholar 

  20. L.P. Boivin, Realization of spectral responsivity scales, in Optical Radiometry, ed. by A.C. Parr, R.U. Datla, J.L. Gardner (Academic Press, Amsterdam, 2005), pp. 97–154

    Google Scholar 

  21. L.P. Boivin, K. Gibb, Monochromator-based cryogenic radiometry at the NRC. Metrologia 32, 565–570 (1995/96)

    Google Scholar 

  22. L.P. Boivin, C. Bamber, A.A. Gaertner et al., Wideband filter radiometers for blackbody temperature measurements. J. Mod. Opt. 57, 1648–1660 (2010)

    MATH  ADS  Google Scholar 

  23. R.L. Booker, J. Geist, Induced junction (inversion layer) photodiode self-calibration. Appl. Opt. 23, 1940–1945 (1984)

    ADS  Google Scholar 

  24. M. Born, E. Wolf, Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) edn. (Cambridge University Press, Cambridge, UK, 1999)

    Google Scholar 

  25. S. Briaudeau, M. Sadli, F. Bourson et al., Primary radiometry for the mise-en-pratique: the laser-based radiance method applied to a pyrometer. Int. J. Thermophys. 32, 2183–2196 (2011)

    ADS  Google Scholar 

  26. G. Brooker, Modern Classical Optics (Oxford University Press, Oxford, UK, 2003)

    MATH  Google Scholar 

  27. S.W. Brown, G.P. Eppeldauer, K.R. Lykke, NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources. Metrologia 37, 579–582 (2000)

    ADS  Google Scholar 

  28. S.W. Brown, G.P. Eppeldauer, J.P. Rice et al., Spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) facility at NIST. Proc. SPIE 5542, 363–374 (2004)

    ADS  Google Scholar 

  29. S.W. Brown, G.P. Eppeldauer, K.R. Lykke, Facility for spectral irradiance and radiance responsivity calibrations using uniform sources. Appl. Opt. 45, 8218–8237 (2006)

    ADS  Google Scholar 

  30. L. Bünger, R.D. Taubert, K. Anhalt, Spectrally resolved radiometric characterization and calibration using a supercontinuum laser in the NIR, in AMA Conferences 2015—SENSOR 2015 and IRS2 2015 (2015), pp. 895–898. https://doi.org/10.5162/irs2015/1.2

  31. L. Bünger, R.D. Taubert, B. Gutschwager et al., Absolute radiation thermometry in the NIR. Int. J. Thermophys. 38, 61 (2017)

    ADS  Google Scholar 

  32. J. Campos, P. Corredera, A. Pons et al., Reflectance dependencies of silicon trap detectors. Metrologia 35, 455–460 (1998)

    ADS  Google Scholar 

  33. A.C. Carter, S.R. Lorentz, T.M. Jung et al., ACR II: improved absolute cryogenic radiometer for low background infrared calibrations. Appl. Opt. 44, 871–875 (2005)

    ADS  Google Scholar 

  34. A.C. Carter, S.I. Woods, S.M. Carr et al., Absolute cryogenic radiometer and solid-state trap detectors for IR power scales down to 1 pW with 0.1% uncertainty. Metrologia 46, S146–S150 (2009)

    Google Scholar 

  35. R.A. Chipman, W.-S.T. Lam, G. Young, Polarized Light and Optical Systems (CRC Press, Boca Raton, FL, 2019)

    Google Scholar 

  36. R.R. Cordero, G. Seckmeyer, D. Pissulla et al., Uncertainty of experimental integrals: application to the UV index calculation. Metrologia 45, 1–10 (2008)

    ADS  Google Scholar 

  37. R.U. Datla, K. Stock, A.C. Parr et al., Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements. Appl. Opt. 31, 7219–7225 (1992)

    ADS  Google Scholar 

  38. A.T.A.M. de Waele, Basic operation of cryocoolers and related thermal machines. J. Low Temp. Phys. 164, 179–236 (2011)

    ADS  Google Scholar 

  39. T. Dönsberg, M. Sildoja, F. Manoocheri et al., A primary standard of optical power based on induced-junction silicon photodiodes operated at room temperature. Metrologia 51, 197–202 (2014)

    ADS  Google Scholar 

  40. T. Dönsberg, H. Mäntynen, E. Ikonen, Optical aperture area determination for accurate illuminance and luminous efficacy measurements of LED lamps. Opt. Rev. 23, 510–521 (2016)

    Google Scholar 

  41. T. Dönsberg, F. Manoocheri, M. Sildoja et al., Predictable quantum efficient detector based on n-type silicon photodiodes. Metrologia 54, 821–836 (2017)

    ADS  Google Scholar 

  42. F.J. Duarte (ed.), Tunable Lasers Handbook (Academic Press, San Diego, CA, 1995)

    Google Scholar 

  43. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    ADS  Google Scholar 

  44. J.M. Dudley, J.R. Taylor (eds.), Supercontinuum Generation in Optical Fibers (Cambridge University Press, Cambridge, UK, 2010)

    Google Scholar 

  45. M. Durak, M.H. Aslan, Optical characterization of the silicon photodiodes for the establishment of national radiometric standards. Opt. Laser Technol. 36, 223–227 (2004)

    ADS  Google Scholar 

  46. M.R. Dury, T.M. Goodman, D.H. Lowe et al., Development of a new radiometer for the thermodynamic measurement of high temperature fixed points, in Temperature: Its Measurement and Control in Science and Industry, vol. 8, AIP Conf. Proc. 1552, 65–70 (2013)

    Google Scholar 

  47. D.F. Edwards, Silicon (Si), in Handbook of Optical Constants of Solids I, ed. by E.D. Palik (Academic Press, San Diego, CA, 1998), pp. 547–569

    Google Scholar 

  48. P. Edwards, M. McCall, Diffraction loss in radiometry. Appl. Opt. 42, 5024–5032 (2003)

    ADS  Google Scholar 

  49. P. Edwards, M. McCall, E. Usadi, Use of the single wavelength approximation in radiometric diffraction loss calculations. Proc. SPIE 5189, 36–44 (2003)

    ADS  Google Scholar 

  50. J.W. Ekin, Experimental Techniques for Low-Temperature Measurements. Cryostat Design, Material Properties, and Superconductor Critical-Current Testing (Oxford University Press, Oxford, UK, 2006)

    Google Scholar 

  51. J.D. Ellis, Field guide to displacement measuring interferometry (SPIE Press, Bellingham, WA, 2014)

    Google Scholar 

  52. C. Enss, S. Hunklinger, Low-Temperature Physics (Springer, Berlin, 2005)

    Google Scholar 

  53. G.P. Eppeldauer, D.C. Lynch, Opto-mechanical and electronic design of a tunnel-trap Si radiometer. J. Res. Natl. Inst. Stand. Technol. 105, 813–828 (2000)

    Google Scholar 

  54. G.P. Eppeldauer, H.W. Yoon, J. Neira et al., Comparison of laser-based and monochromator-based thermodynamic temperature measurements. AIP Conf. Proc. 1552, 60–64 (2013)

    ADS  Google Scholar 

  55. A. Ferrero, J. Campos, A. Pons et al., New model for the internal quantum efficiency of photodiodes based on photocurrent analysis. Appl. Opt. 44, 208–216 (2005)

    ADS  Google Scholar 

  56. J. Fischer, F. Lei, M. Stock, Present state of the determination of thermodynamic temperatures near the freezing point of silver by absolute cryoradiometry. Metrologia 28, 243–246 (1991)

    ADS  Google Scholar 

  57. J. Fischer, M. Stock, A non-contact measurement of radiometric apertures with an optical microtopography sensor. Meas. Sci. Technol. 3, 693–698 (1992)

    ADS  Google Scholar 

  58. J. Fischer, M. Battuello, M. Sadli et al., CCT/03-03. Uncertainty Budgets for Realisation of Scales by Radiation Thermometry (2003), http://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf. Accessed 9 Oct 2019

  59. J. Fischer, M. de Podesta, K.D. Hill et al., Present estimates of the differences between thermodynamic temperatures and the ITS-90. Int. J. Thermophys. 32, 12–25 (2011)

    ADS  Google Scholar 

  60. J.B. Fowler, G. Dezsi, High accuracy measurement of aperture area relative to a standard known aperture. J. Res. Natl. Inst. Stand. Technol. 100, 277–283 (1995)

    Google Scholar 

  61. J.B. Fowler, R.D. Saunders, A.C. Parr, Summary of high-accuracy aperture-area measurement capabilities at the NIST. Metrologia 37, 621–623 (2000)

    ADS  Google Scholar 

  62. J. Fowler, M. Litorja, Geometric area measurements of circular apertures for radiometry at NIST. Metrologia 40, S9–S12 (2003)

    ADS  Google Scholar 

  63. N.P. Fox, Trap detectors and their properties. Metrologia 28, 197–202 (1991)

    ADS  Google Scholar 

  64. N.P. Fox, Advances in radiometric methods for the determination of thermodynamic temperature and its impact on the future of ITS-90, in Proceedings of the TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science ed. by B. Fellmuth, J. Seidel, G. Scholz, vol. 1 (2002), pp. 27–35

    Google Scholar 

  65. N.P. Fox, J.E. Martin, D.H. Nettleton, Radiometric aspects of an experiment to determine the melting/freezing temperature of gold. Metrologia 28, 221–227 (1991)

    ADS  Google Scholar 

  66. N.P. Fox, J.E. Martin, D.H. Nettleton, Absolute spectral radiometric determination of the thermodynamic temperatures of the melting/freezing points of gold, silver and aluminium. Metrologia 28, 357–374 (1991)

    ADS  Google Scholar 

  67. N.P. Fox, J.E. Martin, D.H. Nettleton, Absolute spectral radiation thermometry at the National Physical Laboratory, in Temperature: Its Measurement and Control in Science and Industry ed. by J.F. Schooley, vol. 6, part 1 (American Institute of Physics, New York, 1992), pp. 41–45

    Google Scholar 

  68. N.P. Fox, J.P. Rice, Absolute radiometers, in Optical Radiometry, ed. by A.C. Parr, R.U. Datla, J.L. Gardner (Academic Press, Amsterdam, 2005), pp. 35–96

    Google Scholar 

  69. N.P. Fox, P.R. Haycocks, J.E. Martin et al., A mechanically cooled portable cryogenic radiometer. Metrologia 32, 581–584 (1995/96)

    Google Scholar 

  70. R. Friedrich, J. Fischer, M. Stock, Accurate calibration of filter radiometers against a cryogenic radiometer using a trap detector. Metrologia 32, 509–513 (1995/96)

    Google Scholar 

  71. R. Friedrich, J. Fischer, New spectral radiance scale from 220 nm to 2500 nm. Metrologia 37, 539–542 (2000)

    ADS  Google Scholar 

  72. D. Gagnon, L.-I. Dion-Bertrand, Widely Tunable Filter. Technology & Measurement of Critical Specifications (Photon etc., Inc., 2015), http://photonetc.ekomobi.com/api/files/5556025262d46ee4300003bd-Photon-etc-White-Paper-Widely-Tunable-Filter.pdf. Accessed 9 Oct 2019

  73. A. Gamouras, A.D.W. Todd, É. Côté et al., The development of the advanced cryogenic radiometer facility at NRC. J. Phys.: Conf. Ser. 972, 012014 (2018)

    Google Scholar 

  74. J.L. Gardner, Transmission trap detectors. Appl. Opt. 33, 5914–5918 (1994)

    ADS  Google Scholar 

  75. J.L. Gardner, A four-element transmission trap detector. Metrologia 32, 469–472 (1995/96)

    Google Scholar 

  76. J. Geist, Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard. Appl. Opt. 18, 760–762 (1979)

    ADS  Google Scholar 

  77. J. Geist, Current status of, and future directions in, silicon photodiode self-calibration. Proc. SPIE 1109, 246–256 (1989)

    ADS  Google Scholar 

  78. J. Geist, E.F. Zalewski, A.R. Schaefer, Spectral response self-calibration and interpolation of silicon photodiodes. Appl. Opt. 19, 3795–3799 (1980)

    ADS  Google Scholar 

  79. J. Geist, D. Chandler-Horowitz, A.M. Robinson et al., Numerical modeling of silicon photodiodes for high-accuracy applications. Part I. Simulation programs. J. Res. Natl. Inst. Stand. Technol. 96, 463–469 (1991)

    Google Scholar 

  80. J. Geist, R. Köhler, R. Goebel et al., Numerical modeling of silicon photodiodes for high-accuracy applications. Part II. Interpreting oxide-bias experiments. J. Res. Natl. Inst. Stand. Technol. 96, 471–479 (1991)

    Google Scholar 

  81. J. Geist, A.M. Robinson, C.R. James, Numerical modeling of silicon photodiodes for high-accuracy applications. Part III. Interpolating and extrapolating internal quantum-efficiency calibrations. J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991)

    Google Scholar 

  82. T.R. Gentile, C.L. Cromer, Mode-locked lasers for high-accuracy radiometry. Metrologia 32, 585–587 (1996)

    ADS  Google Scholar 

  83. T.R. Gentile, J.M. Houston, C.L. Cromer, Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer. Appl. Opt. 35, 4392–4403 (1996)

    ADS  Google Scholar 

  84. T.R. Gentile, S.W. Brown, K.R. Lykke et al., Internal quantum efficiency modeling of silicon photodiodes. Appl. Opt. 49, 1859–1864 (2010)

    ADS  Google Scholar 

  85. G. Genty, A.T. Friberg, J. Turunen, Coherence of supercontinuum light. Prog. Opt. 61, 71–112 (2016)

    Google Scholar 

  86. D.C. Ginnings, M.L. Reilly, Calorimetric measurement of thermodynamic temperatures above 0 °C using total blackbody radiation, in Temperature, Its Measurement and Control in Science and Industry ed. by H.H. Plumb, vol. 4, Part 1 (Instrument Society of America, Pittsburgh, PA, 1972), pp. 339–348

    Google Scholar 

  87. A.L. Glebov, O. Mokhun, A. Rapaport et al., Volume Bragg gratings as ultra-narrow and multiband optical filters. Proc. SPIE 8428, 84280C (2012)

    Google Scholar 

  88. R. Goebel, S. Yilmaz, R. Pello, Polarization dependence of trap detectors. Metrologia 33, 207–213 (1996)

    ADS  Google Scholar 

  89. D. Goldstein, Polarized Light, 3rd edn. (CRC Press, Boca Raton, FL, 2011)

    Google Scholar 

  90. E.S.R. Gopal, Specific Heats at Low Temperatures (Plenum Press, New York, 1966)

    Google Scholar 

  91. N. Granzow, Supercontinuum white light lasers: a review on technology and applications. Proc. SPIE 11144, 1114408 (2019)

    Google Scholar 

  92. M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008)

    Google Scholar 

  93. R.D. Guenther, Modern Optics (Wiley, New York, 1990)

    MATH  Google Scholar 

  94. A. Haapalinna, P. Kärhä, E. Ikonen, Spectral reflectance of silicon photodiodes. Appl. Opt. 37, 729–732 (1998)

    ADS  Google Scholar 

  95. Hamamatsu, Si photodiodes. Selection guide. Hamamatsu Photonics K.K. (2020), https://www.hamamatsu.com/resources/pdf/ssd/si_pd_kspd0001e.pdf. Accessed 9 May 2020

  96. X. Hao, Z. Yuan, X. Lu, Lens transmission measurement for an absolute radiation thermometer, in Temperature: Its Measurement and Control in Science and Industry, vol. 8, AIP Conf. Proc. 1552, 649–653 (2013)

    Google Scholar 

  97. J. Hartmann, High-temperature measurement techniques for the application in photometry, radiometry and thermometry. Phys. Rep. 469, 205–269 (2009)

    ADS  Google Scholar 

  98. J. Hartmann, J. Fischer, J. Seidel, A non-contact technique providing improved accuracy in area measurements of radiometric apertures. Metrologia 37, 637–640 (2000)

    ADS  Google Scholar 

  99. J. Hartmann, J. Fischer, U. Johannsen et al., Analytical model for the temperature dependence of the spectral responsivity of silicon. J. Opt. Soc. Am. B 18, 942–947 (2001)

    ADS  Google Scholar 

  100. J. Hartmann, D.R. Taubert, J. Fischer, Measurement of T-T90 down to zinc point temperatures with absolute filter radiometry, in Proceedings of the TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by B. Fellmuth, J. Seidel, G. Scholz, vol. 1 (VDE Verlag GmbH, Berlin, 2002), pp. 337–382

    Google Scholar 

  101. J. Hartmann, K. Anhalt, P. Sperfeld et al., Thermodynamic temperature measurement of the melting curves of Re–C, TiC–C and ZrC–C eutectics, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (LPM/FSB, Zagreb, Croatia, 2005), pp. 189–194

    Google Scholar 

  102. J. Hartmann, J. Hollandt, P. Meindl et al., Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement. MĀPAN J. Metrol. Soc. India 25, 3–10 (2010)

    Google Scholar 

  103. J. Hartmann, K. Anhalt, R.D. Taubert et al., Absolute radiometry for the MeP-K: the irradiance measurement method. Int. J. Thermophys. 32, 1707–1718 (2011)

    ADS  Google Scholar 

  104. F. Havermeyer, W. Liu, C. Moser et al. Volume holographic grating-based continuously tunable optical filter. Opt. Eng. 43, 2017–2021 (2004)

    Google Scholar 

  105. E. Hecht, Optics, 5th edn. (Pearson, Boston, MA, 2017)

    Google Scholar 

  106. F. Hengstberger (ed.), Absolute Radiometry. Electrically Calibrated Thermal Detectors of Optical Radiation (Academic Press, Boston, MA, 1989)

    Google Scholar 

  107. J. Hollandt, R. Friedrich, B. Gutschwager, D.R. Taubert, J. Hartmann, High-accuracy radiation thermometry at the National Metrology Institute of Germany, the PTB. High Temp.–High Press. 35/36, 379–415 (2003/2004)

    Google Scholar 

  108. S. Horne, D. Smith, M. Besen et al., A novel high-brightness, broadband light-source technology from the VUV to the IR. Proc. SPIE 7680, 76800L (2010)

    Google Scholar 

  109. J.M. Houston, C.L. Cromer, J.E. Hardis et al., Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response. Metrologia 30, 285–290 (1993)

    ADS  Google Scholar 

  110. J.M. Houston, J.P. Rice, NIST reference cryogenic radiometer designed for versatile performance. Metrologia 43, S31–S35 (2006)

    ADS  Google Scholar 

  111. E. Ikonen, P. Toivanen, A. Lassila, A new optical method for high-accuracy determination of aperture area. Metrologia 35, 369–372 (1998)

    ADS  Google Scholar 

  112. JCGM 100:2008, GUM. Evaluation of Measurement Data. Guide to the Expression of Uncertainty in Measurement (GUM 1995 with Minor Corrections) (BIPM Joint Committee for Guides in Metrology, Paris, 2008)

    Google Scholar 

  113. JCGM 101:2008, GUM. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method (BIPM Joint Committee for Guides in Metrology, Paris, 2008)

    Google Scholar 

  114. JCGM 200:2012, International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), 3rd edn.—2008 version with minor corrections (BIPM Joint Committee for Guides in Metrology, Paris, 2012)

    Google Scholar 

  115. R. Karwa, Heat and Mass Transfer (Springer, Singapore, 2017)

    MATH  Google Scholar 

  116. I. Kàsa, A circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. IM-25, 8–14 (1976). https://doi.org/10.1109/TIM.1976.6312298

  117. P. Kärhä, A. Vaskuri, H. Mäntynen et al., Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities. Metrologia 54, 524–534 (2017)

    ADS  Google Scholar 

  118. T. Keawprasert, K. Anhalt, D.R. Taubert et al., Monochromator-based absolute calibration of radiation thermometers. Int. J. Thermophys. 32, 1697–1706 (2011)

    ADS  Google Scholar 

  119. T. Keawprasert, K. Anhalt, D.R. Taubert et al., A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source, in Temperature: Its Measurement and Control in Science and Industry, vol. 8. AIP Conf. Proc. 1552, 682–687 (2013)

    Google Scholar 

  120. P.J. Key, N.P. Fox, M.L. Rastello, Oxide-bias measurements in the silicon photodiode self-calibration technique. Metrologia 21, 81–87 (1985)

    ADS  Google Scholar 

  121. B. Khlevnoy, I. Grigoryeva, K. Anhalt et al., Development of large-area high-temperature fixed-point blackbodies for photometry and radiometry. Metrologia 55, S43–S51 (2018)

    Google Scholar 

  122. S. Kodama, M. Horiuchi, K. Kuroda et al., Ultra-black nickel-phosphorus alloy optical absorber, in 6th IEEE Record, Instrumentation and Measurement Technology Conference (Washington, DC, 1989), pp. 495–497. https://doi.org/10.1109/IMTC.1989.36909

  123. O. Kozlova, A. Sadouni, D. Truong et al., Tunable transportable spectroradiometer based on an acousto-optical tunable filter: Development and optical performance. Rev. Sci. Instrum. 87, 125101 (2016)

    ADS  Google Scholar 

  124. A. Kramida, Recent developments in the NIST atomic databases. AIP Conf. Proc. 1344, 81–95 (2011)

    ADS  Google Scholar 

  125. T. Kübarsepp, P. Kärhä, E. Ikonen, Characterization of a polarization-independent transmission trap detector. Appl. Opt. 36, 2807–2812 (1997)

    ADS  Google Scholar 

  126. T. Kübarsepp, M. White, Ten-element photodetector for optical power and attenuation measurements. Appl. Opt. 49, 3774–3779 (2010)

    ADS  Google Scholar 

  127. L-1 Standards and Technology, Inc., http://www.l-1.biz/cryorad3.html. Accessed 8 June 2020

  128. Labsphere, Integrating Sphere Uniform Light Source Applications. Technical Guide (Labsphere, Inc., 2008), https://www.labsphere.com/site/assets/files/2552/a-guide-to-integrating-sphere-uniform-light-source-applications.pdf. Accessed 9 Oct 2019

  129. Labsphere, Integrating Sphere Radiometry and Photometry. Technical Guide (Labsphere, Inc., 2017), https://www.labsphere.com/site/assets/files/2550/radiometry_and_photometry_tech_guide-1.pdf. Accessed 9 Oct 2019

  130. A. Lassila, P. Toivanen, E. Ikonen, An optical method for direct determination of the radiometric aperture area at high accuracy. Meas. Sci. Technol. 8, 973–977 (1997)

    ADS  Google Scholar 

  131. J.H. Lehman, C.L. Cromer, Optical tunnel-trap detector for radiometric measurements. Metrologia 37, 477–480 (2000)

    ADS  Google Scholar 

  132. F. Lei, J. Fischer, Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry. Metrologia 30, 297–303 (1993)

    ADS  Google Scholar 

  133. A.P. Levick, C.L. Greenwell, J. Ireland et al., Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source. Appl. Opt. 53, 3508–3519 (2014)

    ADS  Google Scholar 

  134. M. Litorja, J. Fowler, J. Hartmann et al., Report on the CCPR-S2 supplementary comparison of area measurements of apertures for radiometry. Metrologia 44, 02002 (2007)

    ADS  Google Scholar 

  135. I.C.M. Littler, E.G. Atkinson, P.J. Manson, Non-contact aperture area measurement by occlusion of a laser beam. Metrologia 50, 596–611 (2013)

    ADS  Google Scholar 

  136. I.C.M. Littler, E.G. Atkinson, P.J. Manson, Aperture area measurement using two different traceability routes. Meas. Sci. Technol. 26, 125201 (2015)

    ADS  Google Scholar 

  137. D.J. Livigni, N.A. Tomlin, C.L. Cromer et al., Optical fibre-coupled cryogenic radiometer with carbon nanotube absorber. Metrologia 49, S93–S98 (2012)

    ADS  Google Scholar 

  138. M. López, H. Hofer, S. Kück, Measurement of the absorptance of a cryogenic radiometer cavity in the visible and near infrared. Metrologia 42, 400–405 (2005)

    ADS  Google Scholar 

  139. N.H. Macoy, Total radiant exitance measurements. Proc. SPIE 1311, 16–40 (1990)

    ADS  Google Scholar 

  140. G. Machin, K. Anhalt, P. Bloembergen et al., MeP-K Absolute Primary Radiometric Thermometry (2012), https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Absolute_Primary_Radiometry.pdf. Accessed 30 Apr 2020

  141. J.M. Mantilla, M.L. Hernanz, J. Campos et al., Monochromator-based absolute calibration of a standard radiation thermometer. Int. J. Thermophys. 35, 493–503 (2014)

    ADS  Google Scholar 

  142. J.M. Mantilla, M.J. Martin, J. Campos et al., Testing irradiance and radiance methods for absolute radiation thermometry based on InGaAs detectors in the NIR at CEM/CSIC. J. Phys.: Conf. Ser. 1065, 122005 (2018)

    Google Scholar 

  143. J.E. Martin, T.J. Quinn, B. Chu, Further measurements of thermodynamic temperature using a total radiation thermometer: the range −130 °C to +60 °C. Metrologia 25, 107–112 (1988)

    ADS  Google Scholar 

  144. J.E. Martin, N.P. Fox, Cryogenic Solar Absolute Radiometer (CSAR). Metrologia 30, 305–308 (1993)

    ADS  Google Scholar 

  145. M.J. Martín, J.M. Mantilla, D. del Campo et al., Performance of different light sources for the absolute calibration of radiation thermometers. Int. J. Thermophys. 38, 138 (2017)

    ADS  Google Scholar 

  146. T. Menegotto, M.S. Lima, G.B. Almeida et al., Direct modeling of external quantum efficiency of silicon trap detectors. Proc. SPIE 8083, 808313 (2011)

    Google Scholar 

  147. S. Mezouari, A.R. Harvey, Validity of Fresnel and Fraunhofer approximations in scalar diffraction. J. Opt. A: Pure Appl. Opt. 5, S86–S91 (2003)

    ADS  Google Scholar 

  148. K.D. Mielenz, Optical diffraction in close proximity to plane apertures. I. Boundary-value solutions for circular apertures and slits. J. Res. Natl. Inst. Stand. Technol. 107, 355–362 (2002)

    Google Scholar 

  149. K.D. Mielenz, R.D. Saunders Jr., J.B. Shumaker, Spectroradiometric determination of the freezing temperature of gold. J. Res. Natl. Inst. Stand. Technol. 95, 49–67 (1990)

    Google Scholar 

  150. J.C. Molina, J.J.S. Bernal, H.A. Castillo et al., Electrical substitution radiometer cavity absorptance measurement. Measurement 64, 89–93 (2015)

    ADS  Google Scholar 

  151. B. Muralikrishnan, J.A. Stone, J.R. Stoup, Area measurement of knife edge and cylindrical apertures using ultra low force contact fiber probe on a CMM. Metrologia 45, 281–298 (2008)

    ADS  Google Scholar 

  152. NIST, Strategic Plan 2010. U.S. Department of Commerce. National Institute of Standards and Technology. Physical Measurement Laboratory. Optical Technology Division (2010). https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=905286. Accessed 11 Oct 2019

  153. M. Noorma, P. Toivanen, F. Manoocheri et al., Characterization of filter radiometers with a wavelength-tunable laser source. Metrologia 40, S220–S223 (2003)

    ADS  Google Scholar 

  154. N. Noulkhow, Radiometric Measurement of Thermodynamic Temperatures in the Temperature Range from 419 °C to 660 °C for an Improved Temperature Scale. Ph.D. thesis (Technischen Universität Berlin, 2009), https://depositonce.tu-berlin.de/bitstream/11303/2615/2/Dokument_27.pdf. Accessed 30 May 2020

  155. N. Noulkow, R.D. Taubert, P. Meindl et al., Infrared filter radiometers for thermodynamic temperature determination below 660 °C. Int. J. Thermophys. 30, 131–143 (2009)

    ADS  Google Scholar 

  156. S.A. Ogarev, B.B. Khlevnoy, M.L. Samoylov et al., New high-temperature pyrolitic graphite blackbody sources for precision measurements in radiation thermometry, in TEMPMEKO 2004, Proceedings of the 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (LPM/FSB, Zagreb, Croatia, 2005), pp. 569–574

    Google Scholar 

  157. J.M. Palmer, B.G. Grant, Art of radiometry (SPIE Press, Bellingham, WA, 2010)

    Google Scholar 

  158. U. Pant, H. Meena, G. Gupta et al., Development and realization of Fe–C and Co–C eutectic fixed-point blackbodies for radiation thermometry at CSIR-NPL. Int. J. Thermophys. 41, 101 (2020)

    ADS  Google Scholar 

  159. M. Parker, Digital Signal Processing 101. Everything you Need to Know to Get Started, 2nd edn. (Newnes, Oxford, UK, 2017)

    Google Scholar 

  160. A.C. Parr, A National Measurement System for Radiometry, Photometry, and Pyrometry Based Upon Absolute Detectors. NIST Technical Note 1421. National Institute of Standards and Technology, U.S. Department of Commerce (1996)

    Google Scholar 

  161. R. Paschotta, Field Guide to Lasers (SPIE Press, Bellingham, WA, 2008)

    Google Scholar 

  162. D. Pavanello, R. Galleano, R.P. Kenny, Uncertainty propagation of spectral matching ratios measured using a calibrated spectroradiometer. Appl. Sci. 8, 186 (2018)

    Google Scholar 

  163. F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer, Dordrecht, The Netherlands, 2007)

    Google Scholar 

  164. W.H. Press, S.A. Teukolsky, H.A. Bethe et al., Numerical Recipes. The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, UK, 2007)

    Google Scholar 

  165. T.J. Quinn, J.E. Martin, Radiometric measurement of thermodynamic temperature between 327 and 365 K, in Temperature: Its Measurement and Control in Science and Industry, ed. by J.F. Schooley, vol. 5, part I (American Institute of Physics, New York, 1982), pp. 103–107

    Google Scholar 

  166. T.J. Quinn, J.E. Martin, Radiometric determination of the Stefan-Boltzmann constant, in Proceedings of the 2nd International Conference on “Precision Measurement and Fundamental Constants II”, ed. by B.N. Taylor, W.D. Phillips (National Bureau of Standards, Gaithersburg, MD, 8–12 June 1981) NBS Spec. Publ. 617, pp. 291–297 (National Bureau of Standards, US Department of Commerce, 1984)

    Google Scholar 

  167. T.J. Quinn, J.E. Martin, A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40 °C and +100 °C. Philos. Trans. R. Soc. Lond. A 316, 85–189 (1985)

    ADS  Google Scholar 

  168. R. Radebaugh, Cryocoolers: the state of the art and recent developments. J. Phys.: Condens. Matter 21, 164219 (2009)

    Google Scholar 

  169. K.R. Rao, D.N. Kim, J.J. Hwang, Fast Fourier Transform: Algorithms and Applications (Springer, Dordrecht, Netherlands, 2010)

    MATH  Google Scholar 

  170. H. Römer, Theoretical Optics. An Introduction (Wiley, Weinheim, Germany, 2005)

    MATH  Google Scholar 

  171. J.S. Rubin, E.L. Shirley, Z.H. Levine, Acceleration of diffraction calculations in cylindrically symmetrical optics. Appl. Opt. 57, 788–793 (2018)

    ADS  Google Scholar 

  172. P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    ADS  Google Scholar 

  173. S.G.R. Salim, E.R. Woolliams, M. Dury et al., Furnace uniformity effects on Re–C fixed-point melting plateaux. Metrologia 46, 33–42 (2009)

    ADS  Google Scholar 

  174. J.E. Sansonetti, W.C. Martin, Handbook of basic spectroscopic data. J. Phys. Chem. Ref. Data 34, 1559–2259 (2005)

    ADS  Google Scholar 

  175. W. Silfvast, Laser Fundamentals, 2nd edn. (Cambridge University Press, Cambridge, UK, 2004)

    Google Scholar 

  176. V.I. Sapritsky, B.B. Khlevnoi, V.B. Khromchenko et al., High-temperature blackbody sources for precision radiometry. Proc. SPIE 2815, 2–10 (1996)

    Google Scholar 

  177. V.I. Sapritsky, B.B. Khlevnoy, V.B. Khromchenko et al., Precision blackbody sources for radiometric standards. Appl. Opt. 36, 5403–5408 (1997)

    ADS  Google Scholar 

  178. N. Sasajima, Y. Yamada, F. Sakuma, Investigation of fixed points exceeding 2500 °C using metal carbide-carbon eutectics, in Temperature: Its Measurement and Control in Science and Industry, ed. by D. C. Ripple, vol. 7, part 1. AIP Conf. Proc. 684, 279–285 (American Institute of Physics, Melville, NY, 2003)

    Google Scholar 

  179. P. Saunders, Uncertainty propagation through integrated quantities for radiation thermometry. Metrologia 55, 863–871 (2018)

    ADS  Google Scholar 

  180. P. Saunders, E. Woolliams, H. Yoon et al., Uncertainty Estimation in Primary Radiometric Temperature Measurement (2018), https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Absolute_Primary_Radiometry_Uncertainty.pdf. Accessed 9 Oct 2019

  181. P. Saunders, D.R. White, Physical basis of interpolation equations for radiation thermometry. Metrologia 40, 195–203 (2003)

    ADS  Google Scholar 

  182. M. Schuster, S. Nevas, A. Sperling et al., Spectral calibration of radiometric detectors using tunable laser sources. Appl. Opt. 51, 1950–1961 (2012)

    ADS  Google Scholar 

  183. D. Schlichthärle, Digital Filters. Basics and Design, 2nd edn. (Springer, Heidelberg, Germany, 2011)

    Google Scholar 

  184. F. Schmähling, G. Wübbeler, U. Krüger et al., Uncertainty evaluation and propagation for spectral measurements. Color Res. Appl. 4, 6–16 (2018)

    Google Scholar 

  185. C.A. Schrama, R. Bosma, K. Gibb et al., Comparison of monochromator-based and laser-based cryogenic radiometry. Metrologia 35, 431–435 (1998)

    ADS  Google Scholar 

  186. E.L. Shirley, Intuitive diffraction model for multistaged optical systems. Appl. Opt. 43, 735–743 (2004)

    ADS  Google Scholar 

  187. E.L. Shirley, Diffraction effects on broadband radiation: formulation for computing total irradiance. Appl. Opt. 43, 2609–2620 (2004)

    ADS  Google Scholar 

  188. E.L. Shirley, Diffraction effects in radiometry, in Optical Radiometry, ed. by A.C. Parr, R.U. Datla, J.L. Gardner (Academic Press, Amsterdam, 2005), pp. 409–451

    Google Scholar 

  189. E.L. Shirley, Higher-order boundary-diffraction-wave formulation. J. Mod. Opt. 54, 515–527 (2007)

    MATH  ADS  Google Scholar 

  190. E.L. Shirley, Refined treatment of single-edge diffraction effects in radiometry. J. Opt. Soc. Am. A 33, 1509–1522 (2016)

    ADS  Google Scholar 

  191. P. Sperfeld, K.-H. Raatz, B. Nawo, W. Möller, J. Metzdorf, Spectral-irradiance scale based on radiometric black-body temperature measurements. Metrologia 32, 435–439 (1995/96)

    Google Scholar 

  192. P. Sperfeld, S. Pape, B. Khlevnoy et al., Performance limitations of carbon-cavity blackbodies due to absorption bands at the highest temperatures. Metrologia 46, S170–S173 (2009)

    Google Scholar 

  193. W.H. Steel, M. De, J.A. Bell, Diffraction corrections in radiometry. J. Opt. Soc. Am. 62, 1099–1103 (1972)

    ADS  Google Scholar 

  194. M. Stock, J. Fischer, R. Friedrich et al., Present state of the comparison between radiometric scales based on three primary standards. Metrologia 30, 439–449 (1993)

    ADS  Google Scholar 

  195. M. Stock, J. Fischer, R. Friedrich, H.-J. Jung, B. Wende, Measurement of T-T90 in the range from 500 °C to 962 °C by absolute spectral radiometry employing a cryogenic radiometer and a double heatpipe black body, in Proceedings of the TEMPMEKO ‘96, 6th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by P. Marcarino (Levrotto & Bella, Torino, Italy, 1997), pp. 19–24

    Google Scholar 

  196. M. Stock, R. Goebel, Practical aspects of aperture-area measurements by superposition of Gaussian laser beams. Metrologia 37, 633–636 (2000)

    ADS  Google Scholar 

  197. J.G. Suárez-Romero, E. Tepichín-Rodríguez, K.D. Mielenz, Cross-spectral density propagated through a circular aperture. Metrologia 38, 379–384 (2001)

    ADS  Google Scholar 

  198. J.G. Suárez-Romero, E. Tepichín-Rodríguez, Irradiance measurements without explicit diffraction corrections. Metrologia 40, S189–S191 (2003)

    Google Scholar 

  199. A. Tari, The Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003)

    Google Scholar 

  200. D.R. Taubert, R. Friedrich, J. Hartmann et al., Improved calibration of the spectral responsivity of interference filter radiometers in the visible and near infrared spectral range at PTB. Metrologia 40, S35–S38 (2003)

    Google Scholar 

  201. D.R. Taubert, R. Friedrich, J. Hartmann et al., Long term stability of the spectral responsivity of filter radiometers at the PTB, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (LPM/FSB, Zagreb, Croatia, 2005), pp. 977–982

    Google Scholar 

  202. R.D. Taubert, J. Hollandt, Radiometric characterization of a high temperature blackbody in the visible and near infrared. AIP Conf. Proc. 1552, 607–612 (2013)

    ADS  Google Scholar 

  203. F. Tayeb-Chandoul, J.-M. Coutin, J. Bastie, Méthode de mesure de la sensibilité spectrale des détecteurs pièges de référence. Revue française de métrologie, n° 25, vol. 2011-1, 45–54 (2011). https://doi.org/10.1051/rfm/2011001

  204. T.M. Tritt (ed.), Thermal Conductivity. Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004)

    Google Scholar 

  205. G. Ventura, M. Perfetti, Thermal Properties of Solids at Room and Cryogenic Temperatures (Springer, Dordrecht, Netherlands, 2014)

    Google Scholar 

  206. F. Vignola, J. Michalsky, T. Stoffel, Solar and Infrared Radiation Measurements (CRC Press, Boca Raton, FL, 2012)

    Google Scholar 

  207. G. Walker, Cryocoolers. Part 1: Fundamentals (Springer, New York, 1983)

    Google Scholar 

  208. B. Walter, R. Winkler, F. Graber et al., Direct solar irradiance measurements with a cryogenic solar absolute radiometer, in Radiation Processes in the Atmosphere and Ocean (IRS2016). AIP Conf. Proc. 1810, 080007 (2017)

    Google Scholar 

  209. L. Werner, J. Fischer, U. Johannsen et al., Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer. Metrologia 37, 279–284 (2000)

    ADS  Google Scholar 

  210. L. Werner, J. Hartmann, Calibration and interpolation of the spectral responsivity of silicon photodiode-based detectors. Sens. Actuators A 156, 185–190 (2009)

    Google Scholar 

  211. W.L. Wiese, The expanding NIST atomic spectra database. Phys. Scr. T105, 85–89 (2003)

    ADS  Google Scholar 

  212. R. Winkler, E.R. Woolliams, W.S. Hartree et al., Calibration of an absolute radiation thermometer for accurate determination of fixed-point temperatures. Int. J. Thermophys. 28, 2087–2097 (2007)

    ADS  Google Scholar 

  213. J.T. Woodward, A.W. Smith, C.A. Jenkins et al., Supercontinuum sources for metrology. Metrologia 46, S277–S282 (2009)

    Google Scholar 

  214. J.T. Woodward, P.-S. Shaw, H.W. Yoon et al., Invited article: advances in tunable laser-based radiometric calibration applications at the National Institute of Standards and Technology, USA. Rev. Sci. Instrum. 89, 091301 (2018)

    ADS  Google Scholar 

  215. E.R. Woolliams, Determining the uncertainty associated with integrals of spectral quantities. A report of the EMRP Joint Research. EMRP-ENG05-1.3.1, Version 1.0. NPL, Teddington, UK (2013), http://eprintspublications.npl.co.uk/5826/1/PDID6709.pdf. Accessed 3 June 2020

  216. E.R. Woolliams, Uncertainty analysis for filter radiometry based on the uncertainty associated with integrated quantities. Int. J. Thermophys. 35, 1353–1365 (2014)

    ADS  Google Scholar 

  217. E.R. Woolliams, D.F. Pollard, N.J. Harrison et al., New facility for the high-accuracy measurement of lens transmission. Metrologia 37, 603–605 (2000)

    ADS  Google Scholar 

  218. E.R. Woolliams, B.B. Khlevnoy, N.J. Harrison et al., Measurements of the melting and freezing plateaus of Re-C eutectic fixed-point blackbodies, in TEMPMEKO 2004, Proceedings of the 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (LPM/FSB, Zagreb, Croatia, 2005), pp. 183–188

    Google Scholar 

  219. E.R. Woolliams, M.R. Dury, T.A. Burnitt et al., Primary radiometry for the Mise-en-Pratique for the definition of the kelvin: the hybrid method. Int. J. Thermophys. 32, 1–11 (2011)

    ADS  Google Scholar 

  220. E.R. Woolliams, K. Anhalt, M. Ballico et al., Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points. Philos. Trans. R. Soc. A 374, 20150044 (2016)

    ADS  Google Scholar 

  221. N. Xu, Y. Lin, H. Gan et al., Spectral responsivity calibration of silicon photodetectors using monochromator-based cryogenic radiometer. Proc. SPIE 10155, 1015513 (2016)

    Google Scholar 

  222. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, Radiometric observation of melting and freezing plateaus for a series of metal-carbon eutectic points in the range 1330 °C to 1950 °C. Metrologia 36, 207–209 (1999)

    ADS  Google Scholar 

  223. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, A possibility of practical high temperature fixed points above the copper point, in Proceedings of the TEMPMEKO ’99. The 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by J.F. Dubbeldam, M.J. de Groot, vol. 2 (1999), pp. 535–540

    Google Scholar 

  224. Y. Yamada, Y. Wang, N. Sasajima, Metal carbide-carbon peritectic systems as high-temperature fixed points in thermometry. Metrologia 43, L23–L27 (2006)

    ADS  Google Scholar 

  225. Y. Yamaguchi, Y. Yamada, J. Ishii, New setup for the absolute spectral responsivity of radiation thermometers with a supercontinuum source, in XX IMEKO World Congress “Metrology for Green Growth,” (Busan, Republic of Korea, 2012), https://www.imeko.org/publications/wc-2012/IMEKO-WC-2012-TC12-P1.pdf. Accessed 9 Oct 2019

  226. Y. Yamaguchi, Y. Yamada, J. Ishii, Supercontinuum-source-based facility for absolute calibration of radiation thermometers. Int. J. Thermophys. 36, 1825–1833 (2015)

    ADS  Google Scholar 

  227. Y. Yamaguchi, Y. Yamada, Temperature standard for radiometric calibration of earth-observation sensor, in Proceedings of the SICE Annual Conference 2017, (Kanazawa, Japan, 2017), pp. 424–426. https://doi.org/10.23919/SICE.2017.8105490

  228. H.W. Yoon, C.E. Gibson, P.Y. Barnes, Realization of the National Institute of Standards and Technology detector-based spectral irradiance scale. Appl. Opt. 41, 5879–5890 (2002)

    ADS  Google Scholar 

  229. H.W. Yoon, C.E. Gibson, D.W. Allen et al., The realization and the dissemination of the detector-based kelvin, in TEMPMEKO 2004, Proceedings of the 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (LPM/FSB, Zagreb, Croatia, 2005), pp. 55–70

    Google Scholar 

  230. H.W. Yoon, D.W. Allen, C.E. Gibson et al., Temperature determination of the Ag- and Au-freezing points using a detector-based radiation thermometer, in TEMPMEKO 2004, Proceedings of the 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (LPM/FSB, Zagreb, Croatia, 2005), pp. 113–118

    Google Scholar 

  231. H.W. Yoon, The realization and the dissemination of thermodynamic temperature scales. Metrologia 43, S22–S26 (2006)

    ADS  Google Scholar 

  232. H.W. Yoon, D.W. Allen, C.E. Gibson, M. Litorja, R.D. Saunders, S.W. Brown, G.P. Eppeldauer, K.R. Lykke, Thermodynamic-temperature determinations of the Ag and Au freezing temperatures using a detector-based radiation thermometer. Appl. Opt. 46, 2870–2880 (2007)

    ADS  Google Scholar 

  233. H.W. Yoon, C.E. Gibson, V. Khromchenko et al., Thermodynamic radiation thermometry for the next SI. Int. J. Thermophys. 29, 285–300 (2008)

    ADS  Google Scholar 

  234. H.W. Yoon, C.E. Gibson, G.P. Eppeldauer et al., Thermodynamic radiation thermometry using radiometers calibrated for radiance responsivity. Int. J. Thermophys. 32, 2217–2229 (2011)

    ADS  Google Scholar 

  235. Z. Yuan, X. Lu, X. Hao et al., Thermodynamic temperature measurements of silver freezing point and HTFPs, in Temperature: Its Measurement and Control in Science and Industry, vol. 8. AIP Conf. Proc. 1552, 56–59 (2013)

    Google Scholar 

  236. E.F. Zalewski, J. Geist, Silicon photodiode absolute spectral response self-calibration. Appl. Opt. 19, 1214–1216 (1980)

    ADS  Google Scholar 

  237. E.F. Zalewski, C.R. Duda, Silicon photodiode device with 100% external quantum efficiency. Appl. Opt. 22, 2867–2873 (1983)

    ADS  Google Scholar 

  238. Y. Zong, S.W. Brown, G.P. Eppeldauer et al., A new method for spectral irradiance and radiance responsivity calibrations using kilohertz pulsed tunable optical parametric oscillators. Metrologia 49, S124–S129 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Sapritsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapritsky, V., Prokhorov, A. (2020). Absolute Primary Radiometric Thermometry. In: Blackbody Radiometry. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-57789-6_9

Download citation

Publish with us

Policies and ethics