Skip to main content

Radiation Thermometry of Blackbodies

  • Chapter
  • First Online:
Blackbody Radiometry

Abstract

Two aspects of radiation thermometry of blackbodies (with traceability to the ITS-90 and within framework of relative primary radiometric thermometry, with traceability to the kelvin, the base unit of the SI) are considered. The design features and common sources of systematic errors of narrowband radiation thermometers suitable for measuring blackbody temperatures above the freezing point of silver are discussed. Techniques of temperature extrapolation, interpolation, and least squares fitting based on the Planck and Sakuma-Hattori equations, as well as the methods for evaluating the measurement uncertainties are described. Finally, application of the radiation thermometry to the measurement of temperature nonuniformities over blackbody radiating surfaces is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The f-number (f/#) of an optical system is the ratio of the focal length to the diameter of the entrance pupil.

  2. 2.

    Optical density is the logarithm to base 10 of the reciprocal value of the transmittance.

  3. 3.

    Korea Research Institute of Standards and Science (South Korea).

  4. 4.

    Now, the CCT Working Group for Non-Contact Thermometry (CCT-WG-NCTh) Task Group on Radiation Thermometry (https://www.bipm.org/en/committees/cc/wg/cct-wg-ncth.html).

  5. 5.

    Consultative Committee for Thermometry of the BIPM (International Bureau of Weights and Measures; French: Bureau international des poids et mesures).

  6. 6.

    Mise en pratique (French)—practical realization. A collective name for a series of updatable regulatory documents.

  7. 7.

    The temperatures of phase transition are indicated as they were be determined to the date of publication.

  8. 8.

    Carbolite (UK) and Carbolite Gero (Germany) joined in 2016 forming one company under the name of CARBOLITE GERO. The currently available universal tube furnace can be found at https://www.carbolite-gero.com/products/tube-furnace-range/universal-tube-furnaces/.

References

  1. A. Achmadi, E. Juliastuti, A. Handojo et al., Light source for scanning method of size-of-source effect measurement. Int. J. Thermophys. 36, 3330–3340 (2015)

    ADS  Google Scholar 

  2. M.D. Aggarwal, A.K. Batra, P. Guggilla, P., et al., Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications. NASA/TM–2010–216373 (NASA, Marshall Space Flight Center, AL, 2010), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110008068.pdf. Accessed 15 Mar 2020

  3. M.G. Ahmed, K. Ali, F. Bourson et al., Comparison of the copper blackbody fixed-point cavities between NIS and LNE-Cnam. Meas. Sci. Technol. 24, 095902 (2013)

    ADS  Google Scholar 

  4. K. Anhalt, D. Lindner, U. Krüger et al., Camera-based investigation of high-temperature fixed points for radiometric application. Metrologia 46, S260–S265 (2009)

    Google Scholar 

  5. ASTM E1256-17. Standard Test Methods for Radiation Thermometers (Single Waveband Type) (ASTM International, West Conshohocken, PA, 2017)

    Google Scholar 

  6. ASTM E2758-15a. Standard Guide for Selection and Use of Wideband, Low Temperature Infrared Thermometers (ASTM International, West Conshohocken, PA, 2015)

    Google Scholar 

  7. M. Bart, E.W.M. van der Ham, P. Saunders, A new method to determine the size-of-source effect. Int. J. Thermophys. 28, 2111–2117 (2007)

    ADS  Google Scholar 

  8. A.K. Batra, M.D. Aggarwal, Pyroelectric Materials: Infrared Detectors. Particle Accelerators and Energy Harvesters (SPIE Press, Bellingham, WA, 2013)

    Google Scholar 

  9. W. Bich, M.G. Cox, P.M. Harris, Evolution of the ‘Guide to the Expression of Uncertainty in Measurement’. Metrologia 43, S161–S166 (2006)

    ADS  Google Scholar 

  10. P. Bloembergen, On the correction for the size-of-source effect corrupted by background radiation, in Proceedings of TEMPMEKO ’99, the 7th International Symposium on Temperature and Thermal Measurement in Industry and Science, ed. by J.F. Dubbeldam, M.J. de Groot, vol. 2 (NMi Van Swinden Laboratorium, Delft, Netherlands, 1999), pp. 607–612

    Google Scholar 

  11. P. Bloembergen, On the uncertainty in the correction for the size-of-source effect. Metrologia 46, 544–553 (2009)

    ADS  Google Scholar 

  12. P. Bloembergen, Analytical representations of the size-of-source effect. Metrologia 46, 534–543 (2009)

    Google Scholar 

  13. P. Bloembergen, Y. Yamada, Measurement of thermodynamic temperature above the silver point on the basis of the scheme n = 2. Int. J. Thermophys. 32, 45–67 (2011)

    ADS  Google Scholar 

  14. P. Bloembergen, Y. Yamada, N. Yamamoto et al., Realizing the high-temperature part of a future ITS with the aid of eutectic metal-carbon fixed points. AIP Conf. Proc. 684, 291–296 (2003)

    ADS  Google Scholar 

  15. P. Bloembergen, B.B. Khlevnoy, P. Jimeno Largo et al., Spectral and total effective emissivity of a high-temperature fixed-point radiator considered in relation to the temperature drop across its back wall. Int. J. Thermophys. 29, 370–385 (2008)

    ADS  Google Scholar 

  16. P. Bloembergen, L.M. Hanssen, S.N. Mekhontsev et al., A determination study of the cavity emissivity of the eutectic fixed points Co–C, Pt–C, and Re–C. Int. J. Thermophys. 32, 2623–2632 (2011)

    ADS  Google Scholar 

  17. L.-P. Boivin, Study of bandwidth effects. Appl. Opt. 41, 1929–1935 (2002)

    ADS  Google Scholar 

  18. F. Bourson, S. Briaudeau, B. Rougié et al., Determination of the furnace effect of two high-temperature furnaces on metal-carbon eutectic points. AIP Conf. Proc. 1552, 380–385 (2013)

    ADS  Google Scholar 

  19. W. Budde, Physical Detectors of Optical Radiation (Optical Radiation Measurements, vol. 4) (Academic Press, New York, 1983)

    Google Scholar 

  20. H. Budzier, G. Gerlach, Thermal Infrared Sensors. Theory, Optimisation and Practice (Wiley, Chichester, UK, 2011)

    Google Scholar 

  21. J.D. Buys, K. van Gadow, A PASCAL program for fitting non linear regression models on a micro-computer. EDV in Medizin und Biologie 18, 105–107 (1987), http://www.forestgrowth.wzw.tum.de/fileadmin/publications/239.pdf. Accessed July 17, 2019

  22. L. Bnger, K. Anhalt, R.D. Taubert, Traceability of a CCD-camera system for high-temperature measurements. Int. J. Thermophys. 36, 1784–1802 (2015)

    ADS  Google Scholar 

  23. P. Castro, G. Machin, P. Bloembergen et al., Thermodynamic temperatures of high-temperature fixed points: uncertainties due to temperature drop and emissivity. Int. J. Thermophys. 35, 1341–1352 (2014)

    Google Scholar 

  24. CCT: Mise en pratique for the definition of the kelvin in the SI. SI Brochure, 9th ed. Appendix 2 (2019), https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-kelvin.pdf. Accessed 21 Feb 2020

  25. K. Chahine, M. Ballico, J. Reizes et al., Temperature profile measurement of a graphite tube furnace using optical fibre and platinum thermocouples, in Proceedings of the Sixth Biennial Conference of Metrology Society of Australia (Australian National University, Canberra, 2005), pp. 19–21. https://opus.lib.uts.edu.au/bitstream/10453/7262/1/2005002546.pdf. Accessed 16 July 2019

  26. K. Chahine, M. Ballico, J. Reizes et al., Optimization of a graphite tube blackbody heater for a Thermogage furnace. Int. J. Thermophys. 29, 386–394 (2008)

    ADS  Google Scholar 

  27. CHINO: Standard Radiation Thermometer. Model IR RST Series. (CHINO Corp., 2018), https://www.chino.co.jp/english/wp/wp-content/themes/chino_en/pdf/IR-RST_PSE-600.pdf. Accessed 12 Oct. 2019

  28. J.F. Clare, Correction for nonlinearity in the measurement of luminous flux and radiant power. Meas. Sci. Technol. 13, N38–N41 (2002)

    Google Scholar 

  29. P. Coates, D. Lowe, The Fundamentals of Radiation Thermometers (CRC Press, Boca Raton, FL, 2017)

    Google Scholar 

  30. L. Coslovi, F. Righini, Fast determination of the nonlinearity of photodetectors. Appl. Opt. 19, 3200–3203 (1980)

    ADS  Google Scholar 

  31. R.H. Davies, A.T. Dinsdale, J.A. Gisby et al., MTDATA—thermodynamic and phase equilibrium software from the National Physical Laboratory. Calphad 26, 229–271 (2002)

    Google Scholar 

  32. J. De Lucas, J.J. Segovia, Measurement and analysis of the temperature gradient of blackbody cavities, for use in radiation thermometry. Int. J. Thermophys. 39, 57 (2018)

    ADS  Google Scholar 

  33. A. Daniels, Field Guide to Infrared Systems, Detectors, and FPAs, 3rd edn. (SPIE Press, Bellingham, WA, 2018)

    Google Scholar 

  34. E.L. Dereniak, D.G. Crowe, Optical Radiation Detectors (Wiley, New York, 1984)

    Google Scholar 

  35. D.P. DeWitt, G.D. Nutter (eds.), Theory and Practice of Radiation Thermometry (Wiley, New York, 1988)

    Google Scholar 

  36. W. Dong, D. Lowe, G. Machin et al., Investigation of the furnace effect in cobalt-carbon high-temperature fixed-point cells. Measurement 106, 88–94 (2017)

    ADS  Google Scholar 

  37. E.K. Ejigu, Simulating radiation thermometer temperature measurement error from the performance change of an interference filter due to polarization effect. Measurement 114, 471–477 (2018)

    Google Scholar 

  38. J. Envall, S.N. Mekhontsev, Y. Zong, Spatial scatter effects in the calibration of IR pyrometers and imagers. Int. J. Thermophys. 30, 167–178 (2009)

    ADS  Google Scholar 

  39. G.P. Eppeldauer, Traceability of photocurrent measurements to electrical standards. MĀPAN – J. Metrology Soc. India 24, 193–202 (2009)

    Google Scholar 

  40. G.P. Eppeldauer, H.W. Yoon, AC-mode short-wavelength IR radiation thermometers for measurement of ambient temperatures. Int. J. Thermophys. 29, 1041–1051 (2008)

    ADS  Google Scholar 

  41. G.P. Eppeldauer, S.W.  Brown, K.R. Lykke, Transfer standard filter radiometers: applications to fundamental scales, in Optical Radiometry, ed. by A. Parr, R.U. Datla, J.L. Gardner (Academic Press, Amsterdam, Netherlands, 2005), pp. 155–211

    Google Scholar 

  42. G.P. Eppeldauer, H.W. Yoon, D.G. Jarrett et al., Development of an in situ calibration method for current-to-voltage converters for high-accuracy SI-traceable low dc current measurements. Metrologia 50, 509–517 (2013)

    ADS  Google Scholar 

  43. D.E. Erminy, Scheme for obtaining integral and fractional multiples of a given radiance. J. Opt. Soc. Am. 53, 1448–1449 (1963)

    Google Scholar 

  44. B. Fellmuth, K.D. Hill, J.V. Pearce et al., Guide to the Realization of the ITS-90. Fixed Points: Influence of Impurities (Consultative Committee for Thermometry under the auspices of the International Committee for Weights and Measures, 2015), https://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-Impurities-2015.pdf. Accessed 30 Mar 2020

  45. J. Fischer, H.J. Jung, Determination of the thermodynamic temperatures of the freezing points of silver and gold by near-infrared pyrometry. Metrologia 26, 245–252 (1989)

    ADS  Google Scholar 

  46. J. Fischer, L. Fu, Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source. Appl. Opt. 32, 4187–4194 (1993)

    ADS  Google Scholar 

  47. J. Fischer, M. Battuello, M. Sadli et al., CCT/03-03, in Uncertainty Budgets for Realisation of Scales by Radiation Thermometry (BIPM, 2003), http://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf. Accessed 30 Mar 2020

  48. J. Fischer, M. Battuello, M. Sadli et al., Uncertainty budgets for realization of ITS-90 by radiation thermometry. AIP Conf. Proc. 684, 631–638 (2003)

    ADS  Google Scholar 

  49. J. Fischer, P. Saunders, M. Sadli et al., Uncertainty Budgets for Calibration of Radiation Thermometers Below the Silver Point. Version 1.71 (CCT-WG5 on Radiation Thermometry, 2008), http://www.bipm.org/wg/CCT/CCT-WG5/Allowed/Miscellaneous/Low_T_Uncertainty_Paper_Version_1.71.pdf. Accessed 3 Mar 2020

  50. J. Fischer, M. de Podesta, K.D. Hill et al., Present estimates of the differences between thermodynamic temperatures and the ITS-90. Int. J. Thermophys. 32, 12–25 (2011)

    ADS  Google Scholar 

  51. V.M. Fuksov, A.I. Pohodun, M.S. Matveyev, Experimental and numerical investigation of the temperature field of a fixed-point cavity. Int. J. Thermophys. 32, 337–347 (2011)

    ADS  Google Scholar 

  52. I.E. Gordon, L.S. Rothman, C. Hill et al., The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017)

    ADS  Google Scholar 

  53. J.G. Graeme, Photodiode Amplifiers: OP AMP Solutions  (McGraw-Hill, Boston, MA, 1996)

    Google Scholar 

  54. I.A. Grigoryeva, B.B. Khlevnoy, M.V. Solodilov, Reproducibility of WC–C high-temperature fixed point. Int. J. Thermophys. 38, 69 (2017)

    ADS  Google Scholar 

  55. B. Gutschwager, R. Gärtner, J. Hollandt, An Infrared Precision Radiation Thermometer for the Calibration of Remote Sensing Instrumentations under Vacuum. Proc. SPIE 7477, 747719 (2009)

    Google Scholar 

  56. A. Haapalinna, T. Kübarsepp, P. Kärhä et al., Measurement of absolute linearity of photodetectors with a diode laser. Meas. Sci. Technol. 10, 1075–1078 (1999)

    ADS  Google Scholar 

  57. Hamamatsu: Si photodiodes S1336 series (Hamamatsu Photonics K.K., Solid State Division, 2015), https://www.hamamatsu.com/resources/pdf/ssd/s1336_series_kspd1022e.pdf. Accessed 39 Mar 2020

  58. X. Hao, Z. Yuan, X. Lu et al., Size-of-source effect difference between direct and indirect methods of radiation thermometers. Int. J. Thermophys. 32, 1655–1663 (2011)

    ADS  Google Scholar 

  59. J. Hartmann, S. Schiller, R. Friedrich et al., Non-isothermal temperature distribution and resulting emissivity corrections for the high temperature blackbody BB3200, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, 2002), pp. 227–232

    Google Scholar 

  60. J. Hartmann, J. Hollandt, B. Khlevnoy et al., Blackbody and other calibration sources, in Radiometric Temperature Measurements. I. Fundamentals, ed. by  Z.M. Zhang, B.K. Tsai, G. Machin (Academic Press, Amsterdam, Netherlands, 2010), pp. 241–295

    Google Scholar 

  61. K.D. Hill, D.J. Woods, Exploring the size-of-source and distance effects of radiation thermometers, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by D. Zvizdić (FSB/LPM, Zagreb, Croatia, 2005), pp. 599–604

    Google Scholar 

  62. G.C. Holst, CCD Arrays, Cameras, and Displays, 2nd edn. (SPIE Press, Bellingham, WA, 1998)

    Google Scholar 

  63. K.S. Hong, D.-H. Lee, S. Park et al., A new method for measuring the relative spectral responsivity of detectors based on a pulsed OPO tunable from 210 to 2000 nm, in Proceedings of the Conference on Precision Electromagnetic Measurements (Washington, DC, 2012), https://doi.org/10.1109/cpem.2012.6251106

  64. T.J. Horn, A.N. Abdelmessih, Experimental and Numerical Characterization of a Steady-State Cylindrical Blackbody Cavity at 1100 Degrees Celsius. NASA/TM-2000-209022 (NASA Dryden Flight Research Center, Edwards, CA, 2000), https://www.nasa.gov/centers/dryden/pdf/88687main_H-2403.pdf. Accessed 17 July 2019

  65. IEC/TS 62492-1. Industrial Process Control Devices—Radiation Thermometers—Part 1: Technical Data for Radiation Thermometers (International Electrotechnical Commission, Geneva, Switzerland, 2008)

    Google Scholar 

  66. IEC/TS 62492-2. Industrial Process Control Devices—Radiation Thermometers—Part 2: Determination of the Technical Data for Radiation Thermometers (International Electrotechnical Commission, Geneva, Switzerland, 2013)

    Google Scholar 

  67. M. Imbe, Y. Yamada, Experimental study of the furnace effect with the copper point blackbody. Meas. Sci. Technol. 27, 125020 (2016)

    ADS  Google Scholar 

  68. J. Ishii, M. Kobayashi, F. Sakuma et al., DC-operated InSb radiation thermometer for precision measurement of near room temperatures, in Proceedings of TEMPMEKO ‘99—The 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 2, ed. by J.F. Dubbeldam, M.J. de Groot (NMi Van Swinden Laboratorium, Delft,  Netherlands, 1999), pp. 625–630

    Google Scholar 

  69. J. Ishii, A. Ono, Low-temperature infrared radiation thermometry at NMIJ, in: Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple, part 2. AIP Conf. Proc. 684, 657–662 (2003)

    Google Scholar 

  70. J. Ishii, Y. Yamada, N. Sasajima et al., Radiation Thermometry standards at NMIJ from −30 °C to 2800 °C. AIP Conf. Proc. 1552, 666–671 (2013)

    ADS  Google Scholar 

  71. JCGM 100:2008. GUM. Evaluation of Measurement Data. Guide to the Expression of Uncertainty in Measurement. (GUM 1995 with Minor Corrections) (BIPM Joint Committee for Guides in Metrology, Paris, 2008)

    Google Scholar 

  72. JCGM 101:2008. GUM. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement” —Propagation of Distributions Using a Monte Carlo Method (BIPM Joint Committee for Guides in Metrology, Paris, 2008)

    Google Scholar 

  73. T.P. Jones, J. Tapping, A precision photoelectric pyrometer for the realization of the IPTS-68 above 1064.43 °C. Metrologia 18, 23–32 (1982)

    Google Scholar 

  74. H.J. Jung, Spectral nonlinearity characteristics of low noise silicon detectors and their application to accurate measurements of radiant flux ratios. Metrologia 15, 173–181 (1979)

    ADS  Google Scholar 

  75. H. Kaplan, Practical Applications of Infrared Thermal Sensing and Imaging Equipment, 3rd edn. (SPIE Press, Bellingham, WA, 2007)

    Google Scholar 

  76. KE: Linearpyrometer LP4. Technical Documentation KE 256-6.2007 (KE-Technologie GmbH, Stuttgart, Germany, 2010), http://www.apsmyx.com/uploadfile/2016/1027/20161027055515539.pdf. Accessed 29 Mar 2020

  77. T. Keawprasert, Y. Yamada, J. Ishii, Pilot comparison of radiance temperature scale realization between NIMT and NMIJ. Int. J. Thermophys. 36, 315–326 (2015)

    ADS  Google Scholar 

  78. W. Kester, S. Wurcer, Ch. Kitchin, High impedance sensors, in Op Amp Applications Handbook, ed. by W. Jung (Newnes, Amsterdam, Netherlands, 2005), pp. 257–305

    Google Scholar 

  79. B.B. Khlevnoy, I.A. Grigoryeva, Long-term stability of WC-C peritectic fixed point. Int. J. Thermophys. 36, 367–373 (2015)

    ADS  Google Scholar 

  80. B. Khlevnoy, M. Sakharov, S. Ogarev et al., Investigation of furnace uniformity and its effect on high-temperature fixed-point performance. Int. J. Thermophys. 29, 271–284 (2008)

    ADS  Google Scholar 

  81. B.B. Khlevnoy, M.L. Samoylov, I.A. Grigoryeva et al., Development of high-temperature blackbodies and furnaces for radiation thermometry. Int. J. Thermophys. 32, 1686–1696 (2011)

    ADS  Google Scholar 

  82. B.B. Khlevnoy, I.A. Grigoryeva, D.A. Otryaskin, Development and investigation of WC–C fixed-point cells. Metrologia 49, S59–S67 (2012)

    ADS  Google Scholar 

  83. M.A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE Press, Bellingham, WA, 2014)

    Google Scholar 

  84. R.H. Kingston, Optical Sources, Detectors, and Systems. Fundamentals and Applications (Academic Press, San Diego, CA, 1995)

    Google Scholar 

  85. H.J. Kostkowski, R.D. Lee, Theory and Methods of Optical Pyrometry. NBS Monograph 41 (National Bureau of Standards, U.S. Department of Commerce, 1962)

    Google Scholar 

  86. H.J. Kostkowski, The relative spectral responsivity and slit-scattering function of a spectroradiometer, in Self-Study Manual on Optical Radiation Measurements, ed. by  F.E. Nicodemus, Part I—Concepts, Chapters 7, 8, and 9 (National Bureau of Standards, U.S. Department of Commerce, Washington, DC, 1979)

    Google Scholar 

  87. O. Kozlova, S. Briaudeau, L. Rongione et al., Calibration of radiation thermometers up to 3000 °C: effective emissivity of the source. Int. J. Thermophys. 36, 1726–1742 (2015)

    ADS  Google Scholar 

  88. T.C. Larason, S.S. Bruce, A.C. Parr, Spectroradiometric Detector Measurements: Part I —Ultraviolet Detectors and Part II —Visible to Near-Infrared Detectors. NIST Spec. Publ. 250-41 (National Institute of Standards and Technology, U.S. Department of Commerce, Washington, DC, 1988)

    Google Scholar 

  89. M. Lesser, Charge coupled device (CCD) image sensors, in High Performance Silicon Imaging. Fundamentals and Applications of CMOS and CCD Sensors, ed. by D. Durini (Elsevier–Woodhead Publ., Amsterdam, Netherlands, 2014), pp. 78–97

    Google Scholar 

  90. F. Liebmann, T. Kolat, Radiation thermometer size-of-source effect testing using aperture. AIP Conf. Proc. 1552, 613–618 (2013)

    ADS  Google Scholar 

  91. D. Lowe, H.C. McEvoy, M. Owen, A Mid-IR pyrometer calibrated with high-temperature fixed points for improved scale realization to 2,500 °C. Int. J. Thermophys. 28, 2059–2066 (2007)

    ADS  Google Scholar 

  92. D.H. Lowe, A.D.W. Todd, R. Van den Bossche et al., The equilibrium liquidus temperatures of rhenium–carbon, platinum–carbon and cobalt–carbon eutectic alloys. Metrologia 54, 390–398 (2017)

    ADS  Google Scholar 

  93. C.K. Ma, Experimental investigation of the temperature drop across the wall of a copper-freezing-point blackbody. AIP Conf. Proc. 684, 651–656 (2003)

    ADS  Google Scholar 

  94. L. Ma, F. Sakuma, Improvement of size of source effect measurement of standard radiation thermometers, in Proceedings of the SICE Annual Conference (Kagawa University, Japan, 2007), pp. 1743–1748. https://doi.org/10.1109/sice.2007.4421265

  95. G. Machin, The kelvin redefined. Meas. Sci. Technol. 29, 022001 (2018)

    ADS  Google Scholar 

  96. G. Machin, L. Wright, D. Lowe et al., Optimizing the implementation of high-temperature fixed points through the use of thermal modeling. Int. J. Thermophys. 29, 261–270 (2008)

    ADS  Google Scholar 

  97. G. Machin, K. Anhalt, P. Bloembergen et al., Realisation and dissemination of thermodynamic temperature above the silver point (1234.93 K). CCT/10-12/rev1, version 8 (2010), https://www.bipm.org/cc/CCT/Allowed/25/D12r_MeP-HT_v8.pdf. Accessed 28 Apr 2020

  98. G. Machin, K. Anhalt, P. Bloembergen et al., MeP-K Absolute Primary Radiometric Thermometry (BIPM, 2017), https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Absolute_Primary_Radiometry.pdf. Accessed Apr 30, 2020

  99. G. Machin, K. Anhalt, P. Bloembergen et al., MeP-K Relative Primary Radiometric Thermometry (2017), https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Relative_Primary_Radiometry.pdf. Accessed 24 Feb 2020

  100. H.A. Macleod, Thin-Film Optical Filters, 5th edn. (CRC Press, Boca Raton, FL, 2018)

    Google Scholar 

  101. A. Manoi, P. Saunders, Size-of-source effect in infrared thermometers with direct reading of temperature. Int. J. Thermophys. 38, 101 (2017)

    ADS  Google Scholar 

  102. A. Manoi, P. Wongnut, X. Lu et al., T − T90 for radiation thermometry realization above the copper point. Int. J. Thermophys. 41, 28 (2020)

    ADS  Google Scholar 

  103. A. Manoi, P. Wongnut, X. Lu et al., Calibration of standard radiation thermometers using two fixed points. Metrologia 57, 014002 (2020)

    ADS  Google Scholar 

  104. M.S. Matveev, A.Yu. Makarenko, V.G. Tsorin, The influence of the polarization of the radiation on the accuracy of the transmission of the dimensions of the unit of temperature in radiation thermometry. Meas. Techniques 47, 908–914 (2004)

    Google Scholar 

  105. M.S. Matveyev, New method for measuring the size-of-source effect in standard radiation thermometry, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by B.  Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, 2002), pp. 167–171 

    Google Scholar 

  106. H.C. McEvoy, D.H. Lowe, M. Owen, The NPL InSb-based radiation thermometer for the medium temperature range (< 962 °C). Int. J. Thermophys. 28, 2067–2075 (2007)

    ADS  Google Scholar 

  107. H.C. McEvoy, M. Sadli, F. Bourson et al., A comparison of the NPL and LNE-Cnam silver and copper fixed-point blackbody sources, and measurement of the silver/copper temperature interval. Metrologia 50, 559–571 (2013)

    ADS  Google Scholar 

  108. K.D. Mielenz, K.L. Eckerle, Spectrophotometer linearity testing using the double-aperture method. Appl. Opt. 11, 2294–2303 (1972)

    ADS  Google Scholar 

  109. A. Miklavec, J. Drnovšek, I. Pušnik, Procedure for automated evaluation of a blackbody and a surface calibrator with a radiation thermometer. Int. J. Thermophys. 32, 1674–1685 (2011)

    ADS  Google Scholar 

  110. W. Minkina, S. Dudzik, Infrared Thermography. Errors and Uncertainties (Wiley, Chichester, UK, 2009)

    Google Scholar 

  111. S.P. Morozova, B.E. Lisyanskiy, A.A. Stakharny et al., Low-temperature blackbodies for temperature range from −60 °C to 90 °C. Int. J. Thermophys. 32, 2544–2559 (2011)

    Google Scholar 

  112. I. Müller, A. Adibekyan, B. Gutschwager et al.: Calibration capabilities at PTB for radiation thermometry, quantitative thermography and emissivity, in Proceedings of the 14th Quantitative InfraRed Thermography Conference (QIRT 2018), pp. 329–333 (2018). https://doi.org/10.21611/qirt.2018.015

  113. J.C. Nash, Compact Numerical Methods for Computers. Linear Algebra and Function Minimization (Adam Hilger, Bristol and New York, 1990)

    MATH  Google Scholar 

  114. H. Nasibov, A. Diril, O. Pehlivan, Comparative study of two InGaAs-based reference radiation thermometers. Int. J. Thermophys. 38, 112 (2017)

    ADS  Google Scholar 

  115. M. Noorma, S. Mekhontsev, V. Khromchenko et al.: Design and characterization of Si and InGaAs pyrometers for radiance temperature scale realization between 232 °C and 962 °C. Proc SPIE 6205, 620501 (2006)

    Google Scholar 

  116. P.R. Norton, Photodetectors, in Handbook of Optics, ed. by M. Bass, vol. II. Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, 3rd ed. (McGraw-Hill, New York, 2010, pp. 24.3–24.102

    Google Scholar 

  117. G.D. Nutter, Radiation thermometers: design principles and operating characteristics, in Theory and Practice of Radiation Thermometry, ed. by D.P. DeWitt, G.D. Nutter (Wiley, New York, 1988), pp. 231–337

    Google Scholar 

  118. G.D. Nutter, Spectral-band radiation thermometers, in Theory and Practice of Radiation Thermometry, ed. by D.P. DeWitt, G.D. Nutter (Wiley, New York, 1988), pp. 341–458

    Google Scholar 

  119. S.A. Ogarev, M.L. Samoylov, N.A. Parfentyev et al., Low-temperature blackbodies for IR calibrations in a medium-background environment. Int. J. Thermophys. 30, 77–97 (2009)

    ADS  Google Scholar 

  120. L. Palchetti, G. Bianchini, F. Castagnoli, Design and characterisation of black-body sources for infrared wide-band Fourier transform spectroscopy. Infrared Phys. Technol. 51, 207–215 (2008)

    ADS  Google Scholar 

  121. S.-N. Park, B.-H. Kim, C.-W. Park et al., Realization of radiance temperature scale from 500 K to 1,250 K by a radiation thermometer with a thermal detector. Int. J. Thermophys. 29, 301–311 (2008)

    ADS  Google Scholar 

  122. H.J. Patrick, L.M. Hanssen, J. Zeng et al., BRDF measurements of graphite used in high-temperature fixed point blackbody radiators: a multi-angle study at 405 nm and 658 nm. Metrologia 49, S81–S92 (2012)

    Google Scholar 

  123. J.V. Pearce, Distribution coefficients of impurities in metals. Int. J. Thermophys. 35, 628–635 (2014)

    ADS  Google Scholar 

  124. J.V. Pearce, J.A. Gisby, P.P.M. Steur, Liquidus slopes of impurities in ITS-90 fixed points from the mercury point to the copper point in the low concentration limit. Metrologia 53, 1101–1114 (2016)

    ADS  Google Scholar 

  125. W.H. Press, S.A. Teukolsky, W.T. Vetterling et al., Numerical Recipes. The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, UK, 2007)

    Google Scholar 

  126. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90). Metrologia 27, 3–10 (1990)

    ADS  Google Scholar 

  127. A.V. Prokhorov, V.B. Khromchenko, Precision Large-Area Low Temperature Blackbody BB-100V1 for IR Calibration. Conceptual Design and Computer Modeling. (Virial, Inc., Gaithersburg, MD, 2005). www.virial.com/pdf/BB100V1.pdf. Accessed Mar 29, 2019

  128. I. Pušnik, G. Grgić, J. Drnovšek, System for the determination of the size-of-source effect of radiation thermometers with the direct reading of temperature. Meas. Sci. Technol. 17, 1330–1336 (2006)

    ADS  Google Scholar 

  129. I. Pušnik, G. Grgić, J. Drnovšek, Calculated uncertainty of temperature due to the size-of-source effect in commercial radiation thermometers. Int. J. Thermophys. 29, 322–329 (2008)

    ADS  Google Scholar 

  130. D. Ripple, A. Pokhodun, P.P.M. Steur et al., Guide to the Realization of the ITS-90. Fixed Points: Influence of Impurities. Appendix 4: Recommended List of Common Impurities for Metallic Fixed-point Materials of the ITS-90 (Consultative Committee for Thermometry under the auspices of the International Committee for Weights and Measures, 2015), https://www.bipm.org/utils/common/pdf/ITS-90/Guide-ITS-90-Impurities-2015-Appendix-4.pdf. Accessed 1 Apr. 2020

  131. H. Rodriguez, E. Mendez-Lango, The influence of distance and focus on the calibration of infrared radiation thermometers. Int. J. Thermophys. 30, 179–191 (2009)

    ADS  Google Scholar 

  132. H. Rodríguez-Arteaga, D. Cárdenas-García, An attempt to simplify the determination or the size-of-source effect in radiation thermometers. Int. J. Thermophys. 38, 104 (2017)

    ADS  Google Scholar 

  133. A. Rogalski, Infrared Detectors, 2nd edn. (CRC Press, Boca Raton, FL, 2011)

    Google Scholar 

  134. A. Rogalski, Infrared and Terahertz Detectors, 3rd edn. (CRC Press, Boca Raton, FL, 2019)

    Google Scholar 

  135. F. Sakuma, S. Hattori, Establishing a practical temperature standard by using a narrow-band radiation thermometer with a silicon detector, in Temperature: Its Measurement and Control in Science and Industry, vol. 5, part 1, ed. by J.F. Schooley (American Institute of Physics, New York, 1982), pp. 421–427

    Google Scholar 

  136. F. Sakuma, M. Kobayashi, Interpolation equations of scales of radiation thermometers, in Proceedings of TEMPMEKO ’96, 6th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by P. Marcarino (Levrotto and Bella, Torino, Italy, 1997), pp. 305–310

    Google Scholar 

  137. F. Sakuma, L. Ma, Z. Yuan, Distance effect and size-of-source effect of radiation thermometers, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag GmbH, Berlin, 2002), pp. 161–166

    Google Scholar 

  138. F. Sakuma, L. Ma, Calibration and characterization of the transfer standard radiation thermometer for an APMP intercomparison, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple, part 2. AIP Conf. Proc. 684, pp. 589–594 (2003)

    Google Scholar 

  139. F. Sakuma, L. Ma, Calibration facilities for high temperature radiation thermometers at NMIJ, in 2006 SICE-ICASE International Joint Conference (Busan, South Korea, 2006), pp. 3336–3341, https://doi.org/10.1109/sice.2006.315082

  140. F. Sakuma, L. Ma, Range ratio of Topcon radiation thermometers, in SICE Annual Conference (Kagawa, Japan, 2007). https://doi.org/10.1109/sice.2007.4421264

  141. C.L. Sanders, Accurate measurements of and corrections for nonlinearities in radiometers. J. Res. Natl. Bureau Stand. 76A, 437–453 (1972)

    Google Scholar 

  142. V.I. Sapritsky, B.B. Khlevnoy, V.B. Khromchenko et al., Precision blackbody sources for radiometric standards. Appl. Opt. 36, 5403–5408 (1997)

    ADS  Google Scholar 

  143. V.I. Sapritsky, B.B. Khlevnoy, V. B. Khromchenko et al., Blackbody sources for the range 100 K to 3500 K for precision measurements in radiometry and radiation thermometry, in Temperature: Its Measurement and Control in Science and Industry, ed. by D.C. Ripple, vol. 7, part 2. AIP Conf. Proc. 684, 619–624, 2003)

    Google Scholar 

  144. N. Sasajima, Y. Yamada, F. Sakuma, Investigation of fixed points exceeding 2500 °C using metal carbide-carbon eutectics. AIP Conf. Proc. 684, 279–282 (2003)

    ADS  Google Scholar 

  145. P. Saunders, General interpolation equations for the calibration of radiation thermometers. Metrologia 34, 201–210 (1997)

    ADS  Google Scholar 

  146. P. Saunders, Uncertainty arising from the use of the mean effective wavelength in realizing ITS-90, in Temperature: Its Measurement and Control in Science and Industry, ed. by D.C. Ripple, vol. 7, part 2. AIP Conf. Proc. 684, pp. 639–644 (2003)

    Google Scholar 

  147. P. Saunders, Propagation of uncertainty for non-linear calibration equations with an application in radiation thermometry. Metrologia 40, 93–101 (2003)

    ADS  Google Scholar 

  148. P. Saunders, Calibration and use of low-temperature direct-reading radiation thermometers. Meas. Sci. Technol. 20, 025104 (2009)

    Google Scholar 

  149. P. Saunders, Uncertainties in the realization of thermodynamic temperature above the silver point. Int. J. Thermophys. 32, 26–44 (2011)

    ADS  Google Scholar 

  150. P. Saunders, Correcting radiation thermometry measurements for the size-of-source effect. Int. J. Thermophys. 32, 1633–1654 (2011)

    ADS  Google Scholar 

  151. P. Saunders, Dealing with the size-of-source effect in the calibration of direct-reading radiation thermometers. AIP Conf. Proc. 1552, 619–624 (2013)

    ADS  Google Scholar 

  152. P. Saunders, D.R. White, Physical basis of interpolation equations for radiation thermometry. Metrologia 40, 195–203 (2003)

    ADS  Google Scholar 

  153. P. Saunders, D.R. White, Propagation of uncertainty due to non-linearity in radiation thermometers. Int. J. Thermophys. 28, 2098–2110 (2007)

    ADS  Google Scholar 

  154. P. Saunders, P. Bloembergen, D.R. White, Uncertainty in temperatures realised by radiation thermometry using two fixed points, in Proceedings of TEMPMEKO 2004: 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 2, ed. by D. Zvizdić (FSB/LPM, Zagreb, Croatia, 2005), pp. 1149–1154

    Google Scholar 

  155. P. Saunders, J. Fischer, M. Sadli et al., Uncertainty budgets for calibration of radiation thermometers below the silver point. Int. J. Thermophys. 29, 1066–1083 (2008)

    ADS  Google Scholar 

  156. P. Saunders, H. Edgar, On the characterization and correction of the size-of-source effect in radiation thermometers. Metrologia 46, 62–74 (2009)

    ADS  Google Scholar 

  157. P. Saunders, D.R. White, H. Edgar, A compact combinatorial device for measurement of nonlinearity of radiation detectors. Int. J. Thermophys. 36, 290–302 (2015)

    ADS  Google Scholar 

  158. P. Saunders, E. Woolliams, H. Yoon et al., Uncertainty Estimation in Primary Radiometric Temperature Measurement (Under the auspices of the Consultative Committee for Thermometry, BIPM, 2018), https://www.bipm.org/utils/en/pdf/si-mep/MeP-K-2018_Absolute_Primary_Radiometry_Uncertainty.pdf. Accessed 15 Apr 2020

  159. R.D. Saunders, J.B. Shumaker, Automated radiometric linearity tester. Appl. Opt. 23, 3504–3506 (1984)

    ADS  Google Scholar 

  160. C.H. Sutcliffe, T.J. Carroll, Temperature control system for a silicon pulling furnace. Rev. Sci. Instrum. 27, 656 (1956)

    ADS  Google Scholar 

  161. E. Schreiber, G. Neuer, Reduction of the size-of-source effect and distance dependency of a high precision infrared radiation thermometer, in Proceedings of TEMPMEKO 2004: 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by D. Zvizdić (FSB/LPM, Zagreb, Croatia, 2005), pp. 527–532

    Google Scholar 

  162. M. Schuster, S. Nevas, A. Sperling et al., Spectral calibration of radiometric detectors using tunable laser sources. Appl. Opt. 51, 1950–1961 (2012)

    ADS  Google Scholar 

  163. Y. Shimizu, J. Ishii, Middle temperature scale for infrared radiation thermometer calibrated against multiple fixed points. Int. J. Thermophys. 29, 1014–1025 (2008)

    ADS  Google Scholar 

  164. Y. Shimizu, J. Ishii, Calibration of radiation thermometers and blackbodies in the temperature range from 160 °C to 420 °C. Int. J. Thermophys. 32, 2560–2578 (2011)

    ADS  Google Scholar 

  165. Y. Shimizu, J. Ishii, Blackbody thermal radiator with vertically aligned carbon nanotube coating. Jap. J. Appl. Phys. 53, 068004 (2014)

    ADS  Google Scholar 

  166. D.-J. Shin, D.-H. Lee, C.-W. Park et al., A novel linearity tester for optical detectors using high-brightness light emitting diodes. Metrologia 42, 154–158 (2005)

    ADS  Google Scholar 

  167. D.-J. Shin, S. Park, K.-L. Jeong et al., High-accuracy measurement of linearity of optical detectors based on flux addition of LEDs in an integrating sphere. Metrologia 51, 25–32 (2014)

    ADS  Google Scholar 

  168. J.A. Shohat, J.D. Tamarkin, The Problem of Moments (Am. Math. Soc, Providence, RI, 1943)

    MATH  Google Scholar 

  169. J.B. Shumaker, Linearity considerations and calibrations, in Self-study Manual on Optical Radiation Measurements: Part 1—Concepts, ed. by F.E. Nicodemus, Chapter 11. NBS Tech. Note 910-7 (NBS, U.S. Dept. of Commerce, Washington, DC, 1984)

    Google Scholar 

  170. P. Sperfeld, J. Metzdorf, N.J. Harrison et al., Investigation of high-temperature black body BB3200. Metrologia 35, 419–422 (1998)

    ADS  Google Scholar 

  171. O. Struß, Transfer radiation thermometer covering the temperature range from −50 °C to 1000 °C, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, part 2. AIP Conf. Proc., ed. by D.C. Ripple 684 (American Institute of Physics, Melville, NY, 2003), pp. 565–570

    Google Scholar 

  172. G. Talenti, Recovering a function from a finite number of moments. Inverse Prob. 3, 501–517 (1987)

    MathSciNet  MATH  ADS  Google Scholar 

  173. S.W. Teare, Practical Electronics for Optical Design and Engineering (SPIE Press, Bellingham, WA, 2016)

    Google Scholar 

  174. A.S. Tenney, Radiation ratio thermometry, in Theory and Practice of Radiation Thermometry, ed. by D.P. DeWitt, G.D. Nutter (Wiley, New York, 1988), pp. 459–494

    Google Scholar 

  175. E. Theocharous, J. Ishii, N.P. Fox, Absolute linearity measurements on HgCdTe detectors in the infrared region. Appl. Opt. 43, 4182–4188 (2004)

    ADS  Google Scholar 

  176. E. Theocharous, Absolute linearity measurements on LiTaO3 pyroelectric detectors. Appl. Opt. 47, 3397–3405 (2008)

    ADS  Google Scholar 

  177. E. Theocharous, Absolute linearity measurements on PV HgCdTe detectors in the infrared. Presented on NEWRAD 2011 Conference (Maui, HW, 2011), https://physics.nist.gov/newrad2011/presentations/day3/AM/6_Theo_PV_CMT_Presentation_11_09_20.pdf. Accessed 10 Oct. 2019

  178. A.J.P. Theuwissen, Solid-State Imaging with Charge-Coupled Devices (Kluwer Academic Publishers, New York, 2002)

    Google Scholar 

  179. A. Thompson, H.-M. Chen, Beamcon III, a linearity measurement instrument for optical detectors. J. Res. Natl. Inst. Stand. Technol. 99, 751–755 (1994)

    Google Scholar 

  180. M. Vollmer, K.-P. Möllmann, Infrared Thermal Imaging. Fundamentals, Research and Applications, 2nd ed. (Wiley, Weinheim, Germany, 2018)

    Google Scholar 

  181. E.M. Vuelban, Determining size-of-source effect using the scanning slit method. Meas. Sci. Technol. 24, 105007 (2013)

    ADS  Google Scholar 

  182. D.R. White, M.T. Clarkson, P. Saunders et al., A general technique for calibrating indicating instruments. Metrologia 45, 199–210 (2008)

    ADS  Google Scholar 

  183. T.L. Williams, Thermal Imaging Cameras: Characteristics and Performance (CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  184. W.L. Wolfe, P.W. Kruse, Thermal detectors, in Handbook of Optics, Vol. II. Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, ed. by M. Bass, 3rd ed. (McGraw-Hill, New York, 2010), pp. 28.1–28.14 

    Google Scholar 

  185. J.T. Woodward, A.W. Smith, C.A. Jenkins et al., Supercontinuum sources for metrology. Metrologia 46, S277–S282 (2009)

    Google Scholar 

  186. J.T. Woodward, P.-S. Shaw, H.W. Yoon et al., Advances in tunable laser-based radiometric calibration applications at the National Institute of Standards and Technology, USA. Rev. Sci. Instrum. 89, 091301 (2018)

    ADS  Google Scholar 

  187. E.R. Woolliams, N.J. Harrison, N.P. Fox, Preliminary results of the investigation of a 3500 K black body. Metrologia 37, 501–504 (2000)

    ADS  Google Scholar 

  188. E.R. Woolliams, K. Anhalt, M. Ballico et al., Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points. Phil. Trans. R. Soc. A 374, 20150044 (2016)

    ADS  Google Scholar 

  189. Y. Yamada, H. Sakate, F. Sakuma et al., Radiometric observation of melting and freezing plateaus for a series of metal-carbon eutectic points in the range 1330 °C to 1950 °C. Metrologia 36, 207–209 (1999)

    ADS  Google Scholar 

  190. Y. Yamada, H. Sakate, F. Sakuma, A. Ono, A possibility of practical high temperature fixed points above the copper point, in Proceedings of TEMPMEKO '99: the 7th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 2, ed. by J.F. Dubbeldam, M.J. de Groot (NMi Van Swinden Laboratorium, Delft, Netherlands, 1999), pp. 535–540

    Google Scholar 

  191. Y. Yamada, Y. Wang, N. Sasajima, Metal carbide-carbon peritectic systems as high-temperature fixed points in thermometry. Metrologia 43, L23–L27 (2006)

    ADS  Google Scholar 

  192. Y. Yamaguchi, Y. Yamada, Thermodynamic temperature measurement to the indium point based on radiance comparison. Int. J. Thermophys. 38, 49 (2017)

    ADS  Google Scholar 

  193. S. Yang, I. Vayshenker, X. Li et al., Optical Detector Nonlinearity: Simulation. NIST Tech. Note 1376 (NIST, United States Department of Commerce, Washington, DC, 1995)

    Google Scholar 

  194. Y.S. Yoo, B.-H. Kim, S.D. Lim et al., Realization of a radiation temperature scale from 0 °C to 232 °C by a thermal infrared thermometer based on a multiple-fixed-point technique. Metrologia 50, 409–416 (2013)

    ADS  Google Scholar 

  195. Y.S. Yoo, D.H. Lee, C.W. Park et al., High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs. AIP Conf. Proc. 1552, 693–697 (2013)

    ADS  Google Scholar 

  196. Y.S. Yoo, C.W. Park, B.H. Kim et al., Radiance temperature scales of KRISS realized by two radiation thermometers using pyroelectric detector and silicon photodiode from 273 K to 2900 K. AIP Conf. Proc. 1552, 698–703 (2013)

    ADS  Google Scholar 

  197. Y.S. Yoo, G.J. Kim, S. Park et al., Spectral responsivity calibration of the reference radiation thermometer at KRISS by using a super-continuum laser-based high-accuracy monochromatic source. Metrologia 53, 1354–1364 (2016)

    ADS  Google Scholar 

  198. H.W. Yoon, D.W. Allen, R.D. Saunders, Methods to reduce the size-of-source effect in radiometers. Metrologia 42, 89–96 (2005)

    ADS  Google Scholar 

  199. H.W. Yoon, D.W. Allen, R.D. Saunders, Methods to reduce the size-of-source effect in radiation thermometers, in Proceedings TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, vol. 1, ed. by  D. Zvizdić (FSB/LPM, Zagreb, Croatia, 2005), pp. 521–526

    Google Scholar 

  200. H.W. Yoon, C.E. Gibbson, V. Khromchenko et al., SSE- and noise-optimized InGaAs radiation thermometer. Int. J. Thermophys. 28, 2076–2086 (2007)

    ADS  Google Scholar 

  201. H.W. Yoon, G.P. Eppeldauer, Measurement of thermal radiation using regular glass optics and short-wave infrared detectors. Opt. Express 16, 937–949 (2008)

    ADS  Google Scholar 

  202. H. Yoon, P. Saunders, G. Machin, Guide to the Realization of the ITS-90. Radiation Thermometry . CCT under the auspices of the International Committee for Weights and Measures (2017), https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_6_RadiationThermometry_2018.pdf. Accessed 20 Feb 2020

  203. H.W. Yoon, V. Khromchenko, G.P. Eppeldauer, Improvements in the design of thermal infrared radiation thermometers and sensors. Opt. Express 27, 14246–14259 (2019)

    ADS  Google Scholar 

  204. Z.M. Zhang, G. Machin, Overview of radiation thermometry, in  Radiometric Temperature Measurements, I. Fundamentals, ed. by Z.M. Zhang, B.K. Tsai, G. Machin  (Academic Press , Amsterdam, Netherlands, 2010), pp. 1–28

    Google Scholar 

  205. Z.M. Zhang, B.K. Tsai, G. Machin (eds.), Radiometric Temperature Measurements, I. Fundamentals (Academic Press, Amsterdam, Netherlands, 2010)

    Google Scholar 

  206. Z.M. Zhang, B.K. Tsai, G. Machin (eds.), Radiometric Temperature Measurements, II. Applications (Academic Press, Amsterdam, Netherlands, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Sapritsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapritsky, V., Prokhorov, A. (2020). Radiation Thermometry of Blackbodies. In: Blackbody Radiometry. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-57789-6_8

Download citation

Publish with us

Policies and ethics